These dual monolithic silicon surge protection diodes are designed for applications requiring transient overvoltage protection capability. They are intended for use in voltage and ESD sensitive equipment such as computers, printers, business machines, communication systems, medical equipment and other applications. Their dual junction common anode design protects two separate lines using only one package. These devices are ideal for situations where board space is at a premium.

Specification Features:

VOSEM

THINK CHANGE D

- SOT-23 Package Allows Either Two Separate Unidirectional Configurations or a Single Bidirectional Configuration
- Working Peak Reverse Voltage Range 5.0 V to 36 V
- Peak Power 300 Watt (8/20 μs)

®

- Low Leakage 1.0 μA
- Flammability Rating UL 94 V-0
- These are Pb-Free Devices

Mechanical Characteristics:

CASE: Void-Free, Transfer-Molded, Thermosetting Plastic Case FINISH: Corrosion Resistant Finish, Easily Solderable MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES: 260°C for 10 Seconds

Package Designed for Optimal Automated Board Assembly

Small Package Size for High Density Applications

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation @ 20 μ s (Note 1) @ T _L \leq 25°C	P _{pk}	300	W
IEC 61000–4–2 (ESD) Air Contact		±15 ±26	kV
IEC 61000-4-4 (EFT)		40	А
IEC 61000-4-5 (Lightning)		12	А
Total Power Dissipation on FR–5 Board (Note 2) @ T _A = 25°C Derate above 25°C Thermal Resistance, Junction–to–Ambient	P _D R _{θJA}	225 1.8 556	mW mW/°C °C/W
Total Power Dissipation on Alumina Substrate (Note 3) @ T _A = 25°C Derate above 25°C Thermal Resistance, Junction–to–Ambient	P _D R _{θJA}	300 2.4 417	mW mW/°C °C/W
Junction and Storage Temperature Range	T _J , T _{stg}	– 55 to +150	٥C
Lead Solder Temperature – Maximum (10 Second Duration)	TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

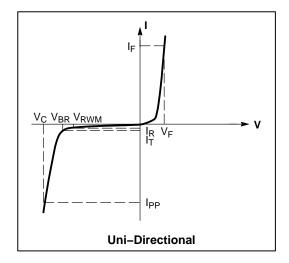
1. Non-repetitive current pulse per Figure 3

3. Alumina = 0.4 x 0.3 x 0.024 in., 99.5% alumina

NOTE: Other voltages may be available upon request

PIN 1. CATHODE 2. CATHODE 3. ANODE

^{2.} FR-5 = 1.0 x 0.75 x 0.62 in.

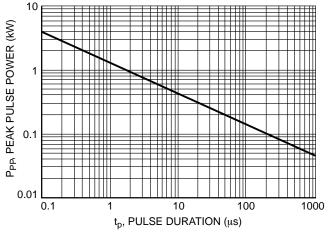

EVVOSEMI[®] THINK CHANGE DO

SMxxT1G

ELECTRICAL CHARACTERISTICS

UNIDIRECTIONAL (Circuit tied to Pins 1 and 3 or 2 and 3)

Symbol	Parameter			
I _{PP}	Maximum Reverse Peak Pulse Current			
V _C	Clamping Voltage @ IPP			
V _{RWM}	Working Peak Reverse Voltage			
I _R	Maximum Reverse Leakage Current @ V _{RWM}			
V _{BR}	Breakdown Voltage @ I _T			
Ι _Τ	Test Current			
ΘV_{BR}	Maximum Temperature Coefficient of V_{BR}			
١ _F	Forward Current			
V _F	Forward Voltage @ I _F			
Z _{ZT}	Maximum Zener Impedance @ I _{ZT}			
I _{ZK}	Reverse Current			
Z _{ZK}	Maximum Zener Impedance @ I _{ZK}			



ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

				V _{BR} , Breakd	own Voltage		V _C @ I _{PP} =	Max I _{PP}	Typical Capacitance
		V _{RWM}	I _R @ V _{RWM}	(Vo	lts)	Ι _Τ	1 Åmp	(Note 4)	(pF)
Device*	Device Marking	(Volts)	(μA)	Min	Max	mA	(Volts)	(Amps)	Pin 1 to 3 @ 0 Volts
SM05T1G	05M	5	10	6.2	7.3	1.0	9.8	17	225
SM12T1G	12M	12	1.0	13.3	15.75	1.0	19	12	95
SM15T1G	15M	15	1.0	16.7	19.6	1.0	24	10	100
SM24T1G	24M	24	1.0	26.7	31.35	1.0	43	5.0	60
SM36T1G	36M	36	1.0	40.0	46.95	1.0	60	4.0	45

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. $8/20 \ \mu s$ pulse waveform per Figure 3

TYPICAL CHARACTERISTICS

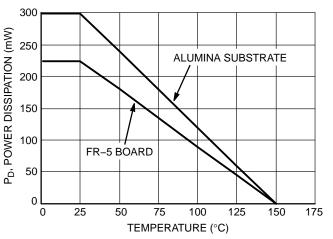


Figure 2. Steady State Power Derating Curve

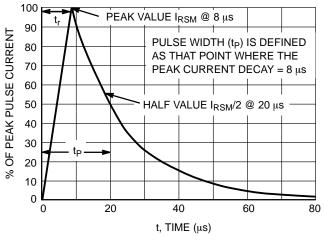
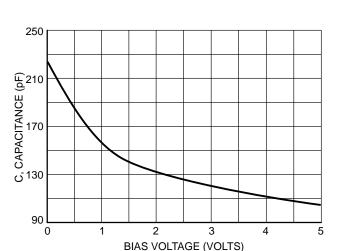



Figure 3. 8/20 µs Pulse Waveform

- - - (- -)

Figure 4. Typical Diode Capacitance (SM05)

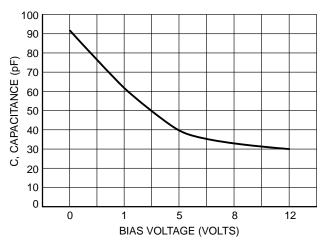
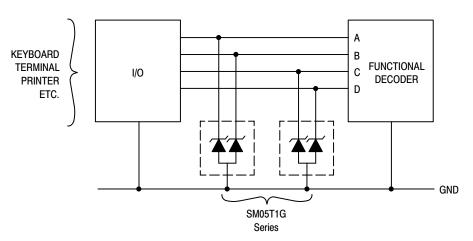
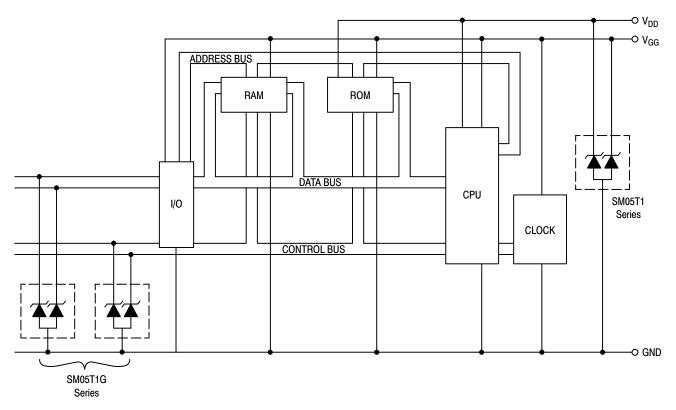
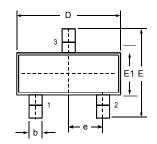



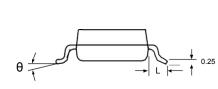
Figure 5. Typical Diode Capacitance (SM12)

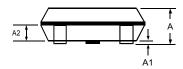
TYPICAL COMMON ANODE APPLICATIONS


A quad junction common anode design in a SOT-23 package protects four separate lines using only one package. This adds flexibility and creativity to PCB design especially

when board space is at a premium. Two simplified examples of surge protection applications are illustrated below.




Computer Interface Protection



Outline Drawing – SOT-23

DIMENSIONS					
SYMBOL	MILLIN	IETER	INCHES		
OTMBOL	MIN	MAX	MIN	MAX	
А	0.900	1.150	0.035	0.045	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.050	0.035	0.041	
D	2.800	3.000	0.110	0.118	
b	0.300	0.500	0.012	0.020	
E	2.250	2.550	0.089	0.100	
E1	1.200	1.400	0.047	0.055	
е	0.950 BSC		0.950 BSC 0.037 BSC		BSC
L	0.500	0.675	0.020	0.027	
θ	0	8°	0	8 °	

Marking

Ordering information

Order code	Package	Baseqty	Delivery mode
SM05T1G	SOT-23	3000	Tape and reel
SM12T1G	SOT-23	3000	Tape and reel
SM15T1G	SOT-23	3000	Tape and reel
SM24T1G	SOT-23	3000	Tape and reel
SM36T1G	SOT-23	3000	Tape and reel