General Description

EVVOSEI

The SN74LVC2G07 is a high performance dual buffer with open drain outputs operating from a 1.65 to 5.5V supply. The internal circuit is composed of multiple stages, including an open drain output. The open drain output provides the capability to set the output switching level to a user selectable value with an external resistor and power supply.

The logic high output value is set by the external power supply and can be less than, equal or greater than the VCC power supply, provided the voltage supply is less than 5.5V.

Features

- Extremely High Speed: t_{PD} 2.3ns (typical) at V_{CC}= 5V
- Designed for 1.65V to 5.5V V_{CC} Operation, CMOS compatible
- Over Voltage Tolerant Inputs
- LVTTL Compatible Interfae Capability with 5V TTL Logic with VCC = 3V
- LVCMOS Compatible
- 24mA Output Sink Capability
- Near Zero Static Supply Current Substantially Reduces System Power Requirements
- Chip Complexity: FET = 72; Equivalent Gate = 18
- These Devices are Pb- Free and are RoHS Compliant

Pin Configuration

Pin Function

PIN	ASSIGNMENT
1	IN A1
2	GND
3	IN A2
4	Y2
5	VCC
6	Y1

Block Diagram

Figure2.Logic symbol

Functional Description

Function Table

A Input	Y Output
L	L
Н	Z

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	-0.5 to 7.0	V
VI	DC Input Voltage	$-0.5 \leq V_I \leq +7.0$	V
Vo	DC Output Voltage Output in Higher or Low State (Note 1)	-0.5 to $V_{CC} + 0.5$	V
I _{IK}	DC Input Diode Current $V_I < GND$	-50	mA
I _{OK}	DC Output Diode Current $V_0 < GND, V_0 > V_{CC}$	±50	mA
Io	DC Output Sink Current	±50	mA
Icc	DC Supply Current per Supply Pin	±100	mA
I _{GND}	DC Ground Current per Supply Pin	±100	mA
T _{STG}	Storage Temperature Range	-65 to 150	°C
T_L	Lead Temperature, 1 mm from Case for 10 Seconds	260	°C
T_J	Junction Temperature Under Bias	150	°C
θ_{JA}	Thermal Resistance	333	°C/W
P _D	Power Dissipation in Still Air at 85 °C	200	mW
MSL	Moisture Sensitivity	Level 1	
F _R	Flammability Rating Oxygen Index:28 to 34	UL94V-0@0.12in	
	ESD Classification Human Body Model (Note 2)	2000	
ESD	Machine Model (Note3)	200	V
	Charged Device Model (Note 4)	N/A	
I	Latchup Performance Above V_{CC} and Below GND at 125 °C	+100	mΛ
Latchup	(Note 5)	±100	IIIA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. IO absolute maximum rating must be observed.
- 2. Tested to EIA/JESD22-A114-A, rated to EIA/JESD22-A114-B.
- 3. Tested to EIA/JESD22-A115-A, rated to EIA/JESD22-A115-A.
- 4. Tested to JESD22-C101-A.
- 5. Tested to EIA/JESD78.

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
V	DC Supply Voltage Operating	1.65	5.5	V
V CC	Date Retention	1.5	5.5	v
V _{IN}	DC Input Voltage	0	5.5	V
V _{OUT}	DC Output Voltage (High or Low State)	0	5.5	V
T _A	Operating Temperature Range	-55	125	°C
	Input Rise and Fall Time $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$	0	20	
t _r ,t _f	$V_{CC} = 3.0 \text{ V} \pm 0.3 \text{ V}$	0	10	ns/V
	$V_{CC}=5.0~V~\pm0.5~V$	0	5	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended.

Electrical Characteristics

DC ELECTRICAL CHARACTERISTICS

Ch al	Demonster	Candition		$TA = 25 \circ C$		-55°C ≤1	TA≤125°C	T	
Symbol	Parameter	Condition	VCC(V)	Min	Тур	Max	Min	Max	Unit
V _{IH}	High-Level Input Voltage		1.65to1.95 2.3 to 5.5	0.75Vcc 0.7Vcc			0.75Vcc 0.7Vcc		V
V _{IL}	Low–Level Input Voltage		1.65to1.95 2.3 to 5.5			0.25Vcc 0.3Vcc		0.25Vcc 0.3Vcc	V
		$I_{OH} = 100 uA$ $I_{OH} = 3 mA$	1.65to5.5		0.0	0.1		0.1 0.24	
	Low-Level	$I_{OL} = 8mA$	2.3		0.20	0.3		0.3	
Vol	$V_{OL} \qquad \begin{array}{c} Output \\ Voltage V_{IN} = \\ V_{IH} \end{array}$	$I_{OL} = 12mA$	2.7		0.22	0.4		0.4	V
		$I_{OL} = 16 m A$	3.0		0.28	0.4		0.4	
		$I_{OL} = 24 m A$	3.0		0.38	0.55		0.55	
		$I_{OL} = 32 m A$	4.5		0.42	0.55		0.55	
$I_{\rm IN}$	Input Leakage Current	$V_{IN} = 5.5 V \text{ or}$ GND	0 to 5.5		±0.1			±1.0	uA
I _{OFF}	Power Off Leakage Current	$V_{IN} = 5.5V \text{ or}$ $V_{OUT} = 5.5V$	0			1		10	uA
Icc	Quiescent Supply Current	$V_{IN} = 5.5 V \text{ or}$ GND	5.5					10	uA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS tr=tf= 2.5ns; C_L = 50pF;

$R_L = 500 \ \Omega$

Symbol	Parameter	Condition	V _{CC} (V)	TA = 25 °C			-55°C ≤TA≤125°C		Unit
				Min	Тур	Max	Min	Max	
		$P_{-} = 1MOC_{-} = 15 pE$	1.65	2.0	5.3	11.4	2.0	12.0	
		\mathbf{K}_{L} = 110122 \mathbf{C}_{L} = 13 pr	1.8	2.0	4.4	9.5	2.0	10.0	
4	Dropagetion Delay	$R_L=1M\Omega C_L=15 \text{ pF}$	2.5±0.2	0.2	3.5	6.5	0.8	4.1	
tPLH	(Figure 2 and 4)	$R_L=1M\Omega C_L=15 \text{ pF}$	2202	0.8	2.1	4.5	0.5	3.7	ns
(PHL (Prguresanu4)	$R_L = 500\Omega \ C_L = 50 \ pF$	3.3±0.3	1.2	2.9	5.5	1.5	5.2		
	$R_L=1M\Omega C_L=15 \text{ pF}$	50,05	0.5	1.8	3.9	0.5	4.1		
		$R_L = 500\Omega \ C_L = 50 \ pF$	J.0±0.3	0.8	2.4	4.3	0.8	4.5	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C _{IN}	Input Capacitance	V_{CC} = 5.5 V, V_{I} = 0 V or V_{CC}	>2.5	pF
C	Power Dissipation Capacitance	$10MHz$, $V_{CC} = 3.3$ V, $V_I = 0$ V or V_{CC}	4	чE
CPD	(Note 6)	10MHz, V_{CC} = 5.5 V, V_I = 0 V or V_{CC}	4	рг

 $6. C_{PD}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation:

 $I_{CC(OPR)}=C_{PD}*V_{CC}*fin+I_{CC}*C_{PD}$ is used to determine the no-load dynamic power consumption;

 $P_D = C_{PD} * V_{CC} * fin + I_{CC} * V_{CC} * Fig.$

Figure 3. Switching Waveforms

 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

Figure 4. Test Circuit

SN74LVC2G07

Package Dimension

SC70-6

SYMBOL	MIN	NOM	MAX		
A	0.85	-	1.05		
A1	0	-	0.10		
A2	0.80	0.90	1.00		
A3	0.47	0.52	0.57		
h NiPdAu	0.22	—	0.29		
PURE Sn	0.23	-	0.33		
b1	0.22	0.25	0.28		
c NiPdAu	0.115	-	0.15		
PURE Sn	0.12	-	0.18		
c1	0.115	0.13	0.14		
D	2.02	2.07	2.12		
E	2.20	2.30	2.40		
E1	1.25	1.30	1.35		
e	0.60	0.65	0.70		
e1	1.20	1.30	1.40		
L	0.28	0.33	0.38		
L1	0.50REF				
L2	0.15BSC				
R	0.10	-	-		
R1	0.10	-	0.25		
θ	0.	-	8'		
θ 1	6'	9*	12		
θ 2	6*	9'	12		

SOT23-6

EVVOSEMI[®] THINK CHANGE DO

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

	SYMBOL	MIN	NOM	MAX
	A	-	-	1.25
	A1	0	-	0.15
	A2	1.00	1.10	1.20
	A3	0.60	0.65	0.70
	b	0.36	-	0.50
	b1	0.36	0.38	0.45
	с	0.14	-	0.20
	c1	0.14	0.15	0.16
	D	2.826	2.926	3.026
	E	2.60	2.80	3.00
	E1	1.526	1.626	1.726
◬	e	0.90	0.95	1.00
▲	e1	1.80	1.90	2.00
	L	0.35	0.45	0.60
	L1		0.59REF	
	L2		0.25BSC	
◬	R	0.10	-	-
◬	R1	0.10	-	0.20
	θ	0'	-	8'
	θ 1	3	5*	7*
◬	θ2	6'	-	14'

DFN6

	CON	MON	DIMENSIONS
(UNITS	OF	MEAS	URE=MILLIMETER)

0.05

SIDE VIEW

SYMBOL	MIN	NOM	MAX		
A	0.50	-	0.60		
A1	0.00	0.02	0.05		
A3	0.10REF				
Ь	0.15	0.20	0.25		
D	0.90	1.00	1.10		
E	1.40	1.50	1.60		
е	0.40	0.50	0.60		
Н	0.10REF				
L	0.30	0.35	0.40		
L1	0.35	0.40	0.45		

Orderinginformation

Order code	Marking code	Package	Baseqty	Deliverymode
SN74LVC2G07DBVR	C075	SOT23-6	3000	Tape and reel
SN74LVC2G07DCKR	CV5	SC70-6	3000	Tape and reel
SN74LVC2G07DRYR	CV	DFN6	3000	Tape and reel