

ESD

TVS

MOS

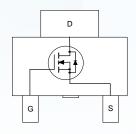
LDO

Diode

Sensor

DC-DC

Product Specification


Domestic Part Number	NDT3055L
▶ Overseas Part Number	NDT3055L
▶ Equivalent Part Number	NDT3055L

General Description

These logic level N-Channel enhancement This very high density process is especially tailored to minimize on-state resistance and provide superior switching performance, and withstand high energy pulse in the avalanche and commutation modes. These devices are particularly suited for low voltage applications such as DC motor control and DC/DC conversion where fast switching, low inline power loss, and resistance to transients are needed.

Features

- V_{DS}(V) = 60V
- RDS(ON) $< 100 \text{m}\Omega$ (V Gs = 10V)
- RDS(ON) <50m Ω (V GS = 4.5V)
- Low drive requirements allowing operation directly from logic drivers. V_{GS(TH)} < 2V.
- High density cell design for extremely low R_{DS(ON)}.
- High power and current handling capability in a widely used surface mount package.

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		NDT3055L	Units
$V_{\rm DSS}$	Drain-Source Voltage		60	V
V_{GSS}	Gate-Source Voltage - Continuous	3	±20	V
I _D	Maximum Drain Current - Continu	OUS (Note 1a)	4	Α
	- Puls	ed	25	
P_{D}	Maximum Power Dissipation	(Note 1a)	3	W
		(Note 1b)	1.3	
		(Note 1c)	1.1	
T_{J},T_{STG}	Operating and Storage Temperature Range		-65 to 150	°C
THERMA	L CHARACTERISTICS			
$R_{\theta JA}$	Thermal Resistance, Junction-to-	Ambient (Note 1a)	42	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-0	Case (Note 1)	12	°C/W

 $^{^{\}ast}$ Order option J23Z for cropped center drain lead.

Electrical Characteristics ($T_A = 25~^{\circ}\text{C}$ unless otherwise noted)

Symbol	Parameter Parameter	Conditions	Min	Тур	Max	Units
OFF CHAR	ACTERISTICS					· !
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	60			V
Δ BV _{DSS} / Δ T _J	Breakdown Voltage Temp. Coefficient	I _D = 250 μA, Referenced to 25 °C		55		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 60 V, V _{GS} = 0 V			1	μA
		T _J =125°C	;		50	μA
I _{GSSF}	Gate - Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate - Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
ON CHARA	CTERISTICS (Note 2)				•	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	1	1.6	2	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Temp. Coefficient	I _D = 250 μA, Referenced to 25 °C		-4		mV /°C
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, I_D = 4 \text{ A}$		70	100	mΩ
		$V_{GS} = 4.5 \text{ V}, I_D = 3.7 \text{ A}$		103	120] '''
I _{D(ON)}	On-State Drain Current	$V_{GS} = 5$, $V_{DS} = 10 \text{ V}$				Α
9 _{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, I_{D} = 4 \text{ A}$		7		S
DYNAMIC (CHARACTERISTICS	•				
C _{iss}	Input Capacitance	$V_{DS} = 25, V_{GS} = 0 V,$ f = 1.0 MHz		345		pF
C _{oss}	Output Capacitance	f = 1.0 MHz		110		pF
C _{rss}	Reverse Transfer Capacitance			30		pF
SWITCHING	CHARACTERISTICS (Note 2)					
t _{D(on)}	Turn - On Delay Time	$V_{DD} = 25, I_{D} = 1 A,$		5	20	ns
ţ,	Turn - On Rise Time	$V_{GS} = 10 \text{ V}, \ R_{GEN} = 6 \Omega$		7.5	20	ns
t _{D(off)}	Turn - Off Delay Time			20	50	ns
t,	Turn - Off Fall Time			7	20	ns
Q_g	Total Gate Charge	$V_{DS} = 40 \text{ V}, I_{D} = 4 \text{ A}, $ $V_{GS} = 10 \text{ V}$		13	20	nC
Q_{gs}	Gate-Source Charge	V _{GS} = 10 V		1.7		nC
Q_{gd}	Gate-Drain Charge			3.2		nC
DRAIN-SOL	IRCE DIODE CHARACTERISTICS AND MAX	KIMUM RATINGS				
l _s	Maximum Continuous Drain-Source Diode Fo	Forward Current			2.5	Α
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = 2.5 \text{ A} \text{ (Note 2)}$		0.8	1.2	V

Notes:

R_{gui} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{guic} is guaranteed by design while R_{gci} is determined by the user's board design.

Scale 1 : 1 on letter size paper
2. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2.0%

Typical Electrical Characteristics

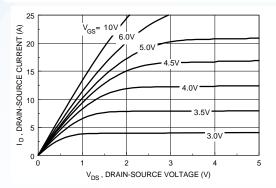


Figure 1. On-Region Characteristics.

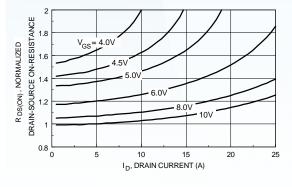


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

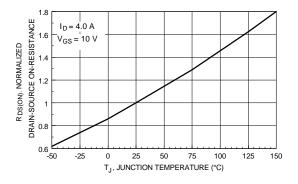


Figure 3. On-Resistance Variation with Temperature.

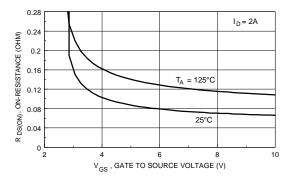


Figure 4. On-Resistance Variation with Gate-to- Source Voltage.

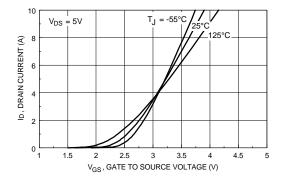


Figure 5. Transfer Characteristics.

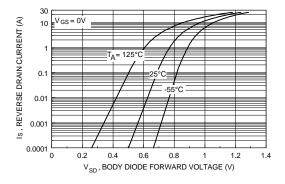


Figure 6. Body Diode Forward Voltage Variation with Current and Temperature.

Typical Electrical Characteristics (continued)

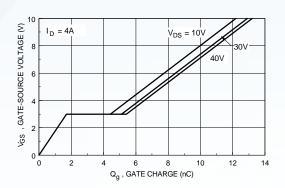
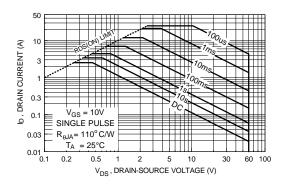



Figure 7. Gate Charge Characteristics.

Figure 8. Capacitance Characteristics.

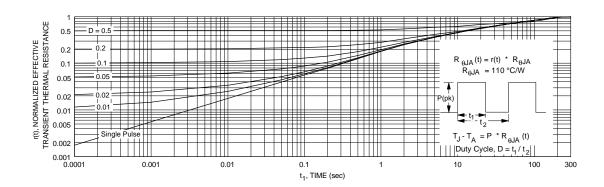
SINGLE PULSE R_{BJA} =110°C/W
T_A = 25°C

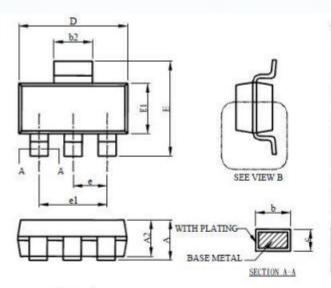
0.001 0.01 0.1 1 10 100 300

SINGLE PULSE TIME (SEC)

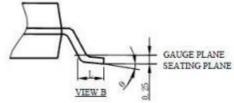
Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.




Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in note 1c.


Transient thermal response will change depending on the circuit board design.

SOT-223

5	SOT	-223	
YMeo.	MILLIMETERS		
0 1	MIN.	MAX.	
A		1.80	
A1	0.02	0.10	
A2	1.55	1.65	
b	0.66	0.84	
b2	2.90	3.10	
С	0.23	0.33	
D	6.30	6.70	
E	6.70	7.30	
E1	3.30	3.70	
e	2.30	BSC	
e1	4.60 BSC		
L	0.90		
0	0"	8"	

Note:

- 1.Refer to JEDEC TO-261AA.
- Dimension D and E1 are determined at the outermost extremes
 of the plastic body exclusive of mold flash, tie bar burrs, gate
 burrs, and interlead flash, but including any mismatch between
 the top and bottom of the plastic body.
- Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.

Marking

Ordering information

Order code	Package	Baseqty	Deliverymode
NDT3055L	SOT-223	2500	Tape and reel

Disclaimer

EVVOSEMI ("EVVO") reserves the right to make corrections, enhancements, improvements, and other changes to its products and services at any time, and to discontinue any product or service without notice.

EVVO warrants the performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used as deemed necessary by EVVO to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Customers should obtain and confirm the latest product information and specifications before final design, purchase, or use. EVVO makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does EVVO assume any liability for application assistance or customer product design. EVVO does not warrant or accept any liability for products that are purchased or used for any unintended or unauthorized application.

EVVO products are not authorized for use as critical components in life support devices or systems without the express written approval of EVVOSEMI.

The EVVO logo and EVVOSEMI are trademarks of EVVOSEMI or its subsidiaries in relevant jurisdictions. EVVO reserves the right to make changes without further notice to any products herein.