

ESD

TVS

MOS

LDO

Diode

Sensor

DC-DC

Product Specification

Domestic Part Number	SD12CT1G
Overseas Part Number	SD12CT1G
▶ Equivalent Part Number	SD12CT1G

The SD12CT1G is designed to protect voltage sensitive components from ESD and transient events. Excellent clamping capability, low leakage, and fast response time, make this part ideal for ESD protection on designs where board space is at a premium. Because of its small size, it is suited

for use in cellular phones, portable devices, digital cameras, power supplies and many other portable applications.

Specification Features:

- Peak Power 350 W (8 x 20цs)
- Low Leakage
- Low Clamping Voltage
- Small Package for use in Portable Electronics
- Meets IEC61000-4-2 Level 4
- Meets IEC6100-4-4 Level 4
- Meets 16 kV Human Body Model ESD Requirements
- These Devices are Pb-Free and are RoHS Compliant

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic

Epoxy Meets UL 94, V⁻0 MOUNTING POSITION: Any

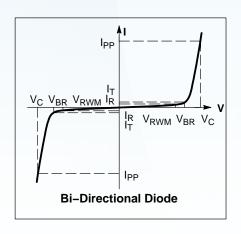
QUALIFIED MAX REFLOW TEMPERATURE: 260℃

Device Meets MSL 1 Requirements

MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Peak Power Dissipation @ 20 μs @ T _L ≤ 25°C		P _{pk}	350	W
IEC 61000-4-2 (ESD)	Air Contact		±30 ±30	kV
IEC 61000-4-4 (EFT)			40	А
Total Device Dissipation FR–5 Board, (Note 1) @ T _A = 25°C Derate above 25°C		P _D	200 1.5	mW mW/°C
Thermal Resistance from Junction-to-Ambient		$R_{\theta JA}$	635	°C/W
Junction and Storage Temperature Range		T _J , T _{stg}	-65 to +150	°C
Lead Solder Temperature – Maximum (10 Second Duration)		TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

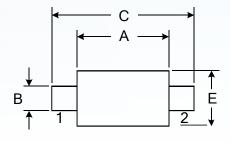

1. Minimum Solder Footprint.

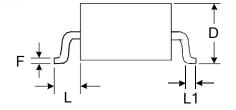
ELECTRICAL CHARACTERISTICS

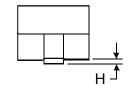
(T_A = 25°C unless otherwise noted)

` ' ' '	,		
Symbol	Parameter		
I _{PP}	Maximum Reverse Peak Pulse Current		
V _C	Clamping Voltage @ IPP		
V_{RWM}	Working Peak Reverse Voltage		
I _R	Maximum Reverse Leakage Current @ V _{RWM}		
V _{BR}	Breakdown Voltage @ I _T		
I _T	Test Current		
ΘV_{BR}	Maximum Temperature Variation of V _{BR}		

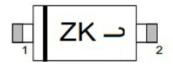
ELECTRICAL CHARACTERISTICS (T_J = 25°C, unless otherwise specified)


Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Reverse Working Voltage	(Note 2)	V_{RWM}			12	V
Breakdown Voltage	I _T = 1 mA, (Note 3)	V_{BR}	13.3			V
Reverse Leakage Current	V _{RWM} = 12 V	I _R			1.0	μΑ
Clamping Voltage Additional Clamping Voltage	I_{PP} = 5 A, (8 x 20 μsec Waveform) I_{PP} = 15 A, (8 x 20 μsec Waveform)	V _C			19 24	V
Maximum Peak Pulse Current	8 x 20 μsec Waveform	I _{PP}			15	Α
Capacitance	V _R = 0 V, f = 1 MHz	C _j		64		pF
	$V_R = 12 \text{ V}, f = 1 \text{ MHz}$			36] !


^{2.} TVS devices are normally selected according to the working peak reverse voltage (V_{RWM}), which should be equal or greater than the DC or continuous peak operating voltage level.


3. V_{BR} is measured at pulse test current I_T.

Outline Drawing - SOD-323



DIMENSIONS						
SYMBOL	SYMBOL MILLIMETER		INCHES		MILLIMETER INCHES	
OTNIBOL	MIN	MAX	MIN	MAX		
Α	1.600	1.800	0.063	0.071		
В	0.250	0.350	0.010	0.014		
С	2.500	2.700	0.098	0.106		
D		1.000		0.039		
E	1.200	1.400	0.047	0.055		
F	0.080	0.150	0.003	0.006		
L	0.475 REF		0.019REF			
L1	0.250	0.400	0.010	0.016		
Н	0.000	0.100	0.000	0.004		

Marking

Ordering information

Order code	Package	Baseqty	Delivery mode
SD12CT1G	SOD-323	3000	Tape and reel

Disclaimer

EVVOSEMI ("EVVO") reserves the right to make corrections, enhancements, improvements, and other changes to its products and services at any time, and to discontinue any product or service without notice.

EVVO warrants the performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used as deemed necessary by EVVO to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Customers should obtain and confirm the latest product information and specifications before final design, purchase, or use. EVVO makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does EVVO assume any liability for application assistance or customer product design. EVVO does not warrant or accept any liability for products that are purchased or used for any unintended or unauthorized application.

EVVO products are not authorized for use as critical components in life support devices or systems without the express written approval of EVVOSEMI.

The EVVO logo and EVVOSEMI are trademarks of EVVOSEMI or its subsidiaries in relevant jurisdictions. EVVO reserves the right to make changes without further notice to any products herein.