

ESD

TVS

MOS

LDO

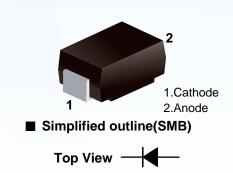
Diode

Sensor

DC-DC

Product Specification

Domestic Part Number	SS32B - SS320B
Overseas Part Number	SS32B - SS320B
▶ Equivalent Part Number	SS32B - SS320B



Schottky Diodes

■ Features

- Metal silicon junction, majority carrier conduction
- For surface mounted applications
- Low power loss, high efficiency
- High forward surge current capability
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications

■ Absolute Maximum Ratings and Electrical Characteristics

Ratings at 25° C ambient temperature unless otherwise specified. Single phase half-wave 60Hz, resistive or inductive load, for capacitive load current derate by 20%.

Parameter	Symbols	SS32B	SS34B	SS36B	SS38B	SS310B	SS312B	SS315B	SS320B	Units
Maximum Repetitive Peak Reverse Voltage	V_{RRM}	20	40	60	80	100	120	150	200	V
Maximum RMS voltage	V _{RMS}	14	28	42	56	70	84	105	140	V
Maximum DC Blocking Voltage	V _{DC}	20	40	60	80	100	120	150	200	V
Maximum Average Forward Rectified Current	I _{F(AV)}	3.0								Α
Peak Forward Surge Current,8.3ms Single Half Sine-wave Superimposed on Rated Load (JEDEC method)	I _{FSM}	80								А
Max Instantaneous Forward Voltage at 3 A	V _F	0.55		0.	70 0.85		0.95		V	
Maximum DC Reverse Current $T_a = 25^{\circ}$ C at Rated DC Reverse Voltage $T_a = 100^{\circ}$ C	I _R	0.5 5 0.3 3							mA	
Typical Junction Capacitance (1)	Cj	450 400						pF		
Typical Thermal Resistance (2)	$R_{\theta JA}$	60								°C/W
Operating Junction Temperature Range	Tj	-55 ~ + 150								°C
Storage Temperature Range	T_{stg}	-55 ~ +150							°C	

^{* 1} Measured at 1MHz and applied reverse voltage of 4V D.C

^{* 2} P.C.B. mounted with $~2^{\prime\prime}~\times 2^{\prime\prime}~$ (5×5 cm) copper pad areas.

■ Typical Characterisitics

Fig.1 Forward Current Derating Curve

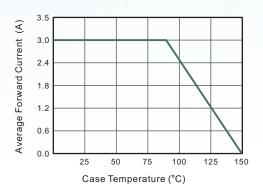


Fig.3 Typical Forward Characteristic

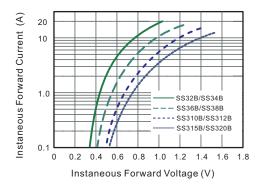


Fig.5 Maximum Non-Repetitive Peak

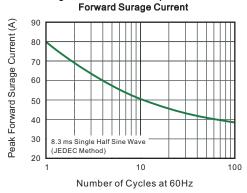


Fig.2 Typical Reverse Characteristics

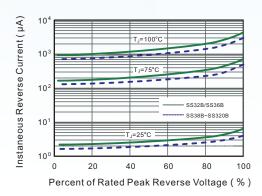
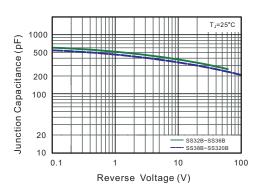
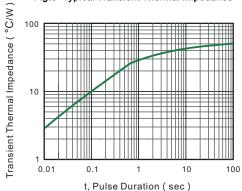
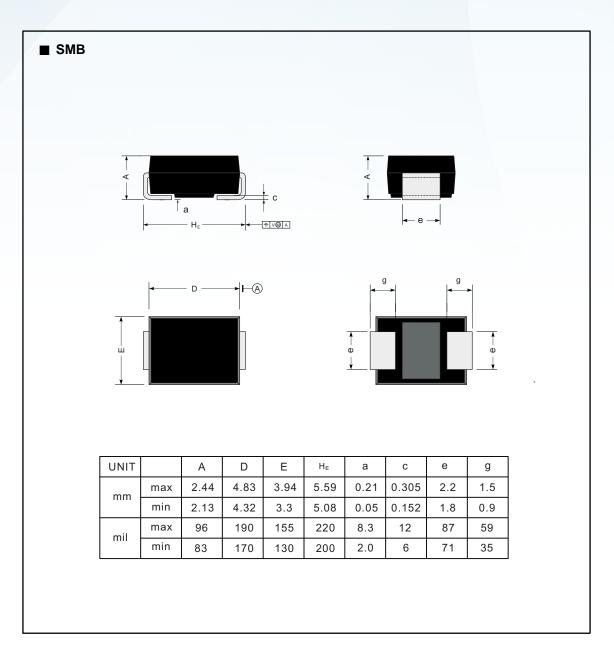
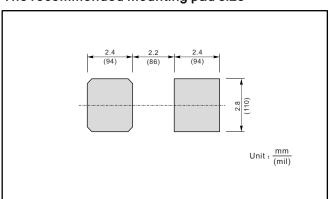


Fig.4 Typical Junction Capacitance


Fig.6- Typical Transient Thermal Impedance

The recommended mounting pad size

Disclaimer

EVVOSEMI ("EVVO") reserves the right to make corrections, enhancements, improvements, and other changes to its products and services at any time, and to discontinue any product or service without notice.

EVVO warrants the performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used as deemed necessary by EVVO to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Customers should obtain and confirm the latest product information and specifications before final design, purchase, or use. EVVO makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does EVVO assume any liability for application assistance or customer product design. EVVO does not warrant or accept any liability for products that are purchased or used for any unintended or unauthorized application.

EVVO products are not authorized for use as critical components in life support devices or systems without the express written approval of EVVOSEMI.

The EVVO logo and EVVOSEMI are trademarks of EVVOSEMI or its subsidiaries in relevant jurisdictions. EVVO reserves the right to make changes without further notice to any products herein.