

ESD

TVS

MOS

LDO

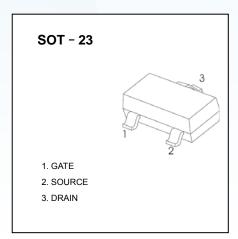
Diode

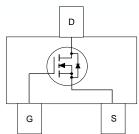
Sensor

DC-DC

Product Specification

Domestic Part Number	FDN359AN
Overseas Part Number	FDN359AN-EV
▶ Equivalent Part Number	FDN359AN


General Description


This N-Channel Logic Level MOSFET is produced using advanced PowerTrench process that has been especially tailored to minimize on-state resistance and yet maintain superior switching performance.

These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.

Features

- VDS (V) = 27V
- lacktriangle RDS(ON) < 46m Ω (VGS = 10V)
- $\bullet~\text{RDS(ON)}~<60\text{m}~\Omega~\text{(VGS = 4.5V)}$

Absolute Maximum Ratings $T_A = 25^{\circ}C$ unless other wise noted

Symbol	Parameter	Ratings	Units
V_{DSS}	Drain-Source Voltage	30	V
V_{GSS}	Gate-Source Voltage	±20	٧
I _D	Maximum Drain Current - Continuous (Note 1a)	2.7	Α
	- Pulsed	15	
P_{D}	Maximum Power Dissipation (Note 1a)	0.5	W
	(Note 1b)	0.46	
T _J ,T _{STG}	Operating and Storage Temperature Range	-55 to 150	°C
THERMAL	CHARACTERISTICS		
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a)	250	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case (Note 1)	75	°C/W

Electrical Characteristics($\chi = 25$ °C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
OFF CHAR	ACTERISTICS	·		•		•
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \ I_{D} = 250 \ \mu\text{A}$	30			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	I _D =250 μA, Referenced to 25 °C		23		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, \ V_{GS} = 0 \text{ V}$			1	μΑ
		T _J = 55°C			10	μΑ
I _{GSSF}	Gate - Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate - Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
ON CHARA	CTERISTICS (Note)					
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	1	1.6	3	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Temp. Coefficient	$I_D = 250 \mu\text{A}$, Referenced to 25°C		-4		mV/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, \ I_D = 2.7 \text{ A}$		37	46	mΩ
		$V_{GS} = 4.5 \text{ V}, I_{D} = 2.4 \text{ A}$		49	60	111
I _{D(ON)}	On-State Drain Current	$V_{GS} = 10 \text{ V}, \ V_{DS} = 5 \text{ V}$	15			Α
g _{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, I_{D} = 2.7 \text{ A}$		9.5		S
DYNAMIC C	HARACTERISTICS					
C _{iss}	Input Capacitance	$V_{DS} = 10 \text{ V}, \ V_{GS} = 0 \text{ V}, $ f = 1.0 MHz		480		pF
Coss	Output Capacitance	f = 1.0 MHz		120		pF
C _{rss}	Reverse Transfer Capacitance			45		pF
SWITCHING	CHARACTERISTICS (Note)					
t _{D(on)}	Turn - On Delay Time	$V_{DD} = 5 \text{ V}, I_D = 1 \text{ A},$		6	12	ns
t,	Turn - On Rise Time	$V_{GS} = 4.5 \text{ V}, R_{GEN} = 6 \Omega$		13	24	ns
t _{D(off)}	Turn - Off Delay Time			15	27	ns
t _f	Turn - Off Fall Time			4	10	ns
Q_g	Total Gate Charge	$V_{DS} = 10 \text{ V}, I_{D} = 2.7 \text{ A},$		5	7	nC
Q_{gs}	Gate-Source Charge	$V_{GS} = 5 \text{ V}$		1.4		nC
Q_{gd}	Gate-Drain Charge			1.6		nC
DRAIN-SO	JRCE DIODE CHARACTERISTICS AND MA	XIMUM RATINGS				
I _s	Maximum Continuous Drain-Source Diode Fo	rward Current			0.42	Α
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = 0.42 \text{ A} \text{ (Note)}$		0.65	1.2	V

Note:

Typical $\rm R_{\rm \thetaJA}$ using the board layouts shown below on FR-4 PCB in a still air environment :

a. 250°C/W when mounted on a 0.02 in² pad of 2oz Cu.

b. 270°C/W when mounted on a minimum pad.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width $\leq 300 \mu s,$ Duty Cycle $\leq 2.0 \%.$

^{1.} R_{gut} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{gut} is guaranteed by design while R_{gut} is determined by the user's board design.

Typical Electrical Characteristics

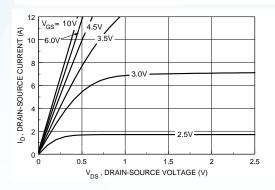


Figure 1. On-Region Characteristics.

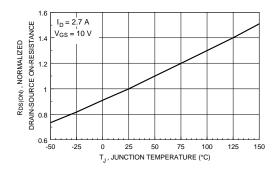


Figure 3. On-Resistance Variation with Temperature.

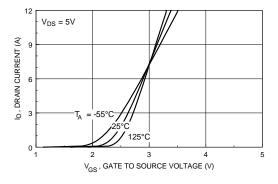


Figure 5. Transfer Characteristics.

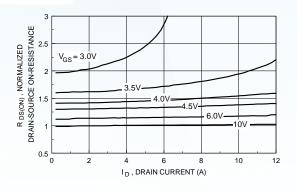


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

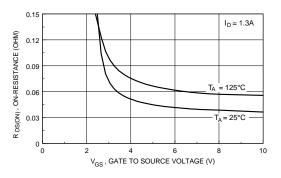


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

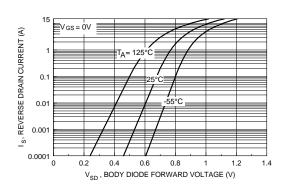


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Electrical Characteristics

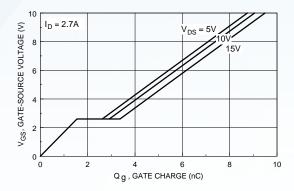


Figure 7. Gate Charge Characteristics.

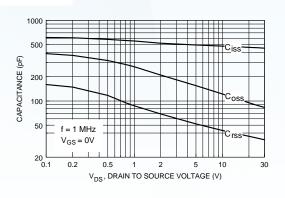


Figure 8. Capacitance Characteristics.

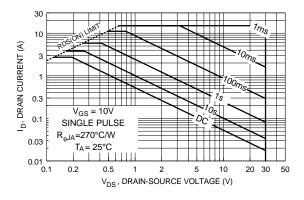


Figure 9. Maximum Safe Operating Area.

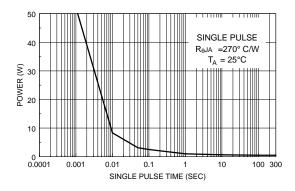
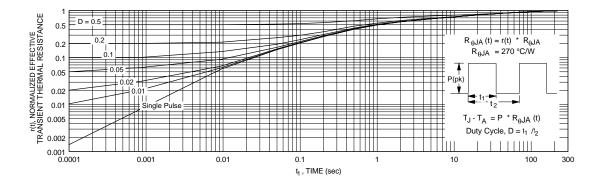
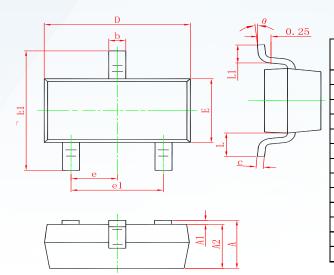


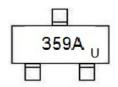
Figure 10. Single Pulse Maximum Power Dissipation.




Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in note 1b.

Transient thermal response will change depending on the circuit board design.



SOT-23 PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Зупьоі	Min.	Max.	Min.	Max.	
Α	0.900	1.150	0.035	0.045	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.050	0.035	0.041	
b	0.300	0.500	0.012	0.020	
С	0.080	0.150	0.003	0.006	
D	2.800	3.000	0.110	0.118	
E	1.200	1.400	0.047	0.055	
E1	2.250	2.550	0.089	0.100	
е	0.950 TYP.		0.037	TYP.	
e1	1.800	2.000	0.071	0.079	
L	0.550 REF.		0.022 REF.		
L1	0.300	0.500	0.012	0.020	
θ	0°	8°	0°	8°	

Marking

Ordering information

Order code	Package	Baseqty	Deliverymode
FDN359AN	SOT-23	3000	Tape and reel

Disclaimer

EVVOSEMI ("EVVO") reserves the right to make corrections, enhancements, improvements, and other changes to its products and services at any time, and to discontinue any product or service without notice.

EVVO warrants the performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used as deemed necessary by EVVO to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Customers should obtain and confirm the latest product information and specifications before final design, purchase, or use. EVVO makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does EVVO assume any liability for application assistance or customer product design. EVVO does not warrant or accept any liability for products that are purchased or used for any unintended or unauthorized application.

EVVO products are not authorized for use as critical components in life support devices or systems without the express written approval of EVVOSEMI.

The EVVO logo and EVVOSEMI are trademarks of EVVOSEMI or its subsidiaries in relevant jurisdictions. EVVO reserves the right to make changes without further notice to any products herein.