

ESD

TVS

MOS

LDO

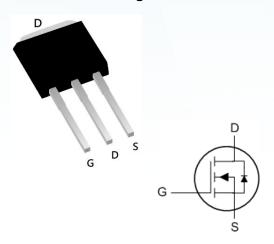
Diode

Sensor

DC-DC

Product Specification

Domestic Part Number	IRFU120
Overseas Part Number	IRFU120
▶ Equivalent Part Number	IRFU120



Description

The I-PAK is designed for surface mounting using vapor phase,infraredor wave soldering techniques. Power dissipation levels up to 1.5 watts are possible in typical surface mount applications.

TO251 Pin Configuration

Features

$$\begin{split} &V_{DS}\left(V\right) = 100V \\ &I_{D} = 9.4A \; (V_{GS} = 10V) \\ &R_{DS(ON)} = 210 m\Omega \; (V_{GS} = 10V) \end{split}$$

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	9.4		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	6.6	Α	
I _{DM}	Pulsed Drain Current ⊕®	38		
P _D @T _C = 25°C	Power Dissipation	48	W	
	Linear Derating Factor	0.32	W/°C	
V _{GS}	Gate-to-Source Voltage	± 20	V	
E _{AS}	Single Pulse Avalanche Energy@6	91	mJ	
I _{AR}	Avalanche Current①⑥	5.7	Α	
E _{AR}	Repetitive Avalanche Energy①⑤	4.8	mJ	
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns	
T _J	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
R ₀ JC	Junction-to-Case		3.1	
R ₀ JA	Junction-to-Ambient (PCB mount) **		50	°C/W
R ₀ JA	Junction-to-Ambient		110	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_{D} = 250\mu A$
ΔV _{(BR)DSS} /ΔT _J	Breakdown Voltage Temp. Coefficient		0.12		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		_	0.21		V _{GS} = 10V, I _D = 5.6A ⊕
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
g fs	Forward Transconductance	2.7			S	V _{DS} = 25V, I _D = 5.7A®
1	Proin to Course Leake so Current			25		V _{DS} = 100V, V _{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current			250	μΑ	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
ı	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	'''A	V _{GS} = -20V
Qg	Total Gate Charge			25		I _D = 5.7A
Qgs	Gate-to-Source Charge			4.8	nC	V _{DS} = 80V
Q _{gd}	Gate-to-Drain ("Miller") Charge			11	1	V _{GS} = 10V, See Fig. 6 and 13 ⊕ 6
t _{d(on)}	Turn-On Delay Time		4.5			V _{DD} = 50V
tr	Rise Time		23		ne	I _D = 5.7A
t _{d(off)}	Turn-Off Delay Time		32		ns	$R_G = 22\Omega$
tf	Fall Time		23		1	R_D = 8.6 Ω , See Fig. 10 \oplus \oplus
	Internal Dusin Industry	ernal Drain Inductance — 4.5 —		Between lead,		
L _D	Internal Drain Inductance		4.5	_	nΗ	6mm (0.25in.)
1	Internal Source Inductance — 7.5 —			from package		
L _S			7.5			and center of die contact⑤ s
C _{iss}	Input Capacitance		330			V _{GS} = 0V
Coss	Output Capacitance		92		pF	V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		54		†	f = 1.0MHz, See Fig. 5®

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current		9.4	A	MOSFET symbol	
	(Body Diode)				showing the	
I _{SM}	Pulsed Source Current			2.0	1 ^ '	integral reverse ∘√ 🔭 🕏
	(Body Diode) ①⑥		38		p-n junction diode.	
V _{SD}	Diode Forward Voltage			1.3	V	T _J = 25°C, I _S = 5.5A, V _{GS} = 0V ⊕
t _{rr}	Reverse Recovery Time		99	150	ns	T _J = 25°C, I _F = 5.7A
Qm	Reverse RecoveryCharge		390	580	nC	di/dt = 100A/µs ⊕ ⊚
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② V_{DD} = 25V, starting T_J = 25°C, L = 4.7mH R_{G} = 25 Ω , I_{AS} = 5.7A. (See Figure 12)
- $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$
- ① Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$
- ⑤ This is applied for I-PAK, Ls of D-PAK is measured between lead and center of die contact
- ** When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994

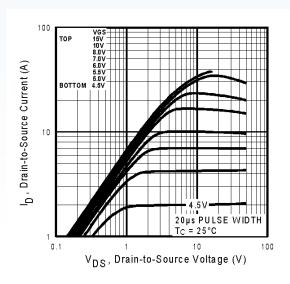


Fig 1. Typical Output Characteristics

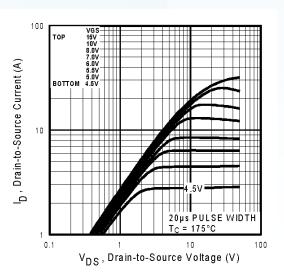


Fig 2. Typical Output Characteristics

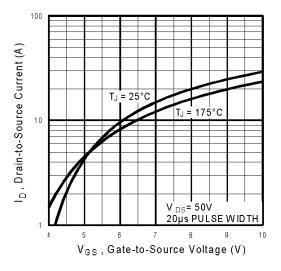
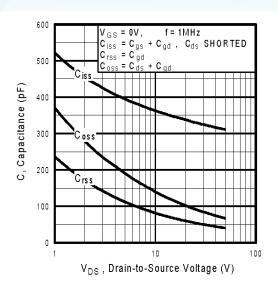



Fig 3. Typical Transfer Characteristics

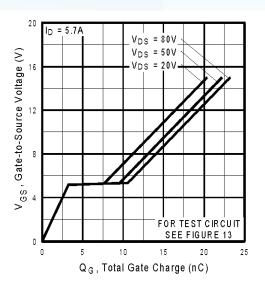


Fig 4. Normalized On-Resistance Vs. Temperature

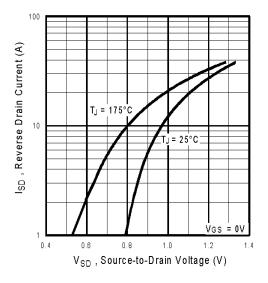


Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

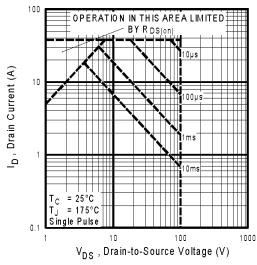


Fig 8. Maximum Safe Operating Area

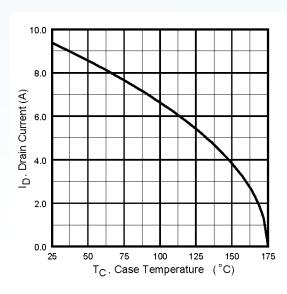


Fig 9. Maximum Drain Current Vs. Case Temperature

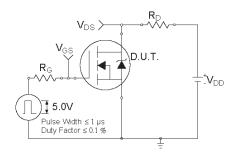


Fig 10a. Switching Time Test Circuit

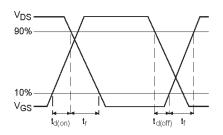


Fig 10b. Switching Time Waveforms

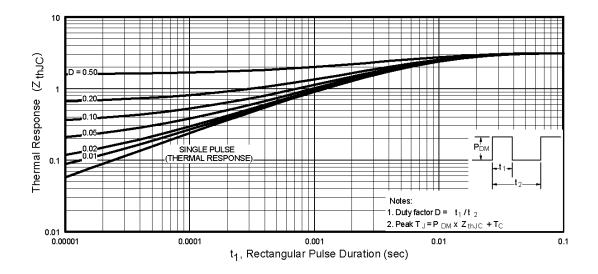


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

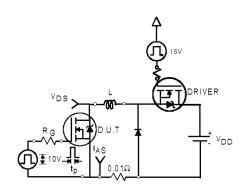


Fig 12a. Unclamped Inductive Test Circuit

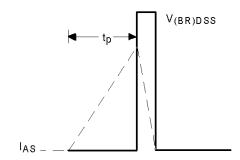


Fig 12b. Unclamped Inductive Waveforms

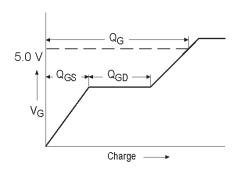
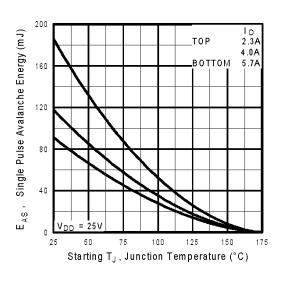



Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

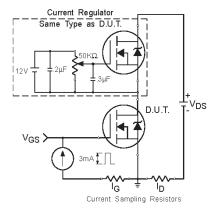


Fig 13b. Gate Charge Test Circuit

Disclaimer

EVVOSEMI ("EVVO") reserves the right to make corrections, enhancements, improvements, and other changes to its products and services at any time, and to discontinue any product or service without notice.

EVVO warrants the performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used as deemed necessary by EVVO to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Customers should obtain and confirm the latest product information and specifications before final design, purchase, or use. EVVO makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does EVVO assume any liability for application assistance or customer product design. EVVO does not warrant or accept any liability for products that are purchased or used for any unintended or unauthorized application.

EVVO products are not authorized for use as critical components in life support devices or systems without the express written approval of EVVOSEMI.

The EVVO logo and EVVOSEMI are trademarks of EVVOSEMI or its subsidiaries in relevant jurisdictions. EVVO reserves the right to make changes without further notice to any products herein.