

ESD

TVS

MOS

LDO

Diode

Sensor

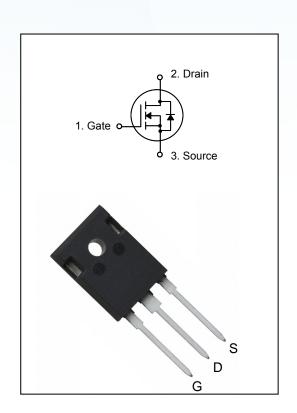
DC-DC

Product Specification

Domestic Part Number	IRFP150N
Overseas Part Number	IRFP150N
▶ Equivalent Part Number	IRFP150N

100V,60A Heatsink N-Channel Type Power MOSFET

General Features


V_{DS}=100V,I_D=60A

 $R_{dson} \le 30 m\Omega @V_{GS} = 10V (Typ:25 m\Omega)$

- Extended Safe Operating Area
- Low Reverse transfer capacitances
- 100% Single Pulse avalanche energy Test

Application

- Power switching application
- Load switch

Electrical Characteristics @ Ta=25 ℃ (unless otherwise specified)

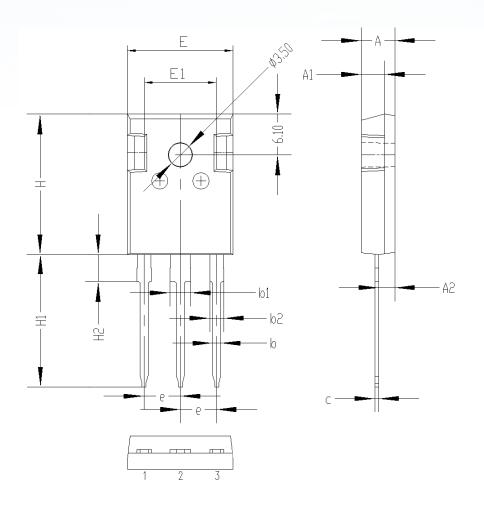
a) Limited Parameters:

Symbol	Parameter	Value	Units
V _{DSS}	Drain-to-Source Breakdown Voltage	100	V
ΙD	Drain Current (continuous) at Tc=25 ℃	60	Α
Ілм	Drain Current (pulsed)	240	Α
V _G s	Gate to Source Voltage	+/-25	V
Ptot	Total Dissipation at Tc=25 °C	300	W
Tj	Max. Operating Junction Temperature	175	${\mathbb C}$
Eas	Single Pulse Avalanche Energy	750	mj

b) Electrical Parameters:

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{DS}	Drain-source Voltage	V _{GS} =0V, I _D =250µA	100	120		V
R _{DS(on)}	Static Drain-to-Source on-Resistance	V _{GS} =10V, I _D =30A		25	30	m Ω
V _{GS(th)}	Gated Threshold Voltage	V _{DS} = V _{GS} , I _D =250μA	2.0	3.0	4.0	V
loss	Zero Gate Voltage Drain Current	V _{DS} =100V, V _{GS} = 0V			1.0	μд
lgss(F)	Gated Body Leakage Current	V _{GS} = +25V,			100	nA
lgss(r)	Gated Body Leakage Current	V _{GS} = -25V,			-100	nA
Ciss	Input Capacitance	V _{GS} = 0V,		4200		pF
Coss	Output Capacitance	V _{DS} =30V,		440		pF
Crss	Reverse Transfer Capacitance	f=1.0MHZ		218		pF
Q_{g}	Total Gate Charge	V _{DS} =80V		92		nC
Q_{gs}	Gate-Source Charge	I _D =40A		25		nC
Q_{gd}	Gate-Drain Charge	V _{GS} =10V		31		nC

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
t _{d(on)}	Turn-on Delay Time	V_{DD} =35V, I_{D} =10A		16		nS
t _r	Turn-on Rise Time	V_{GS} =10V, R_{G} =6 Ω		26		nS
t _{d(off)}	Turn-off Delay Time			70		nS
t _f	Turn-off Fall Time			71		nS


Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
I _{SD}	S-D Current(Body Diode)			60		Α
I _{SDM}	Pulsed S-D Current(Body Diode)			240		Α
V _{SD}	Diode Forward Voltage	V _{GS} = 0V, I _{DS} = 40A			1.3	V
t _{rr}	Reverse Recovery Time	T _J =25°C,I _F =40A		82		nS
Q _{rr}	Reverse Recovery Charge di/dt=100A/us 150 nC				nC	
	*Pulse Test: Pulse Width <= 300µs, Duty Cycle< =2%					

Symbol	Paramter	Тур	Units
$R_{ heta$ JC	Junction-to-Case	0.6	°C/W

Package Information

TO-247 PACKAGE

	单位: mm			
	MIN	NOM	MAX	
Α	4.8	5	5.2	
A1	3.3	3.5	3.7	
A2	2.1	2.3	2.5	
b	1	1.2	1.4	
b1	2.9	3.1	3.3	
b2	1.9	2.1	2.3	
С	0.4	0.6	0.8	
е	5.25	5.45	5.65	
Е	15.6	15.8	16	
E1	10.6	10.8	11	
Н	20.8	21	21.2	
H1	19.4	19.9	20.4	
H2	3.9	4.1	4.3	
G	5.9	6.1	6.3	
ØР	3.3	3.5	3.7	

Disclaimer

EVVOSEMI ("EVVO") reserves the right to make corrections, enhancements, improvements, and other changes to its products and services at any time, and to discontinue any product or service without notice.

EVVO warrants the performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used as deemed necessary by EVVO to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Customers should obtain and confirm the latest product information and specifications before final design, purchase, or use. EVVO makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does EVVO assume any liability for application assistance or customer product design. EVVO does not warrant or accept any liability for products that are purchased or used for any unintended or unauthorized application.

EVVO products are not authorized for use as critical components in life support devices or systems without the express written approval of EVVOSEMI.

The EVVO logo and EVVOSEMI are trademarks of EVVOSEMI or its subsidiaries in relevant jurisdictions. EVVO reserves the right to make changes without further notice to any products herein.