

ESD

TVS

MOS

LDO

Diode

Sensor

DC-DC

Product Specification

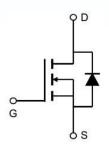
Domestic Part Number	IRFP3306
Overseas Part Number	IRFP3306
▶ Equivalent Part Number	IRFP3306

N-Channel Enhancement Mode Power MOSFET

Description


The IRFP3306 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate Charge It can be used in a wide variety of applications.

Application


- \square Power switching application.
- ☐ Hard switched and high frequency circuits.
- \square Uninterruptible power supply.

Features

- □ VDS =80V, ID =120A
- \square RDS(ON) : 2.5m Ω @VGS=10V
- ☐ Low gate charge.
- ☐ Green device available.
- ☐ Advanced high cell denity trench technology for ultra low on-resistance.
- \square Excellent package for good heat dissipation.

Marking and pin assignment

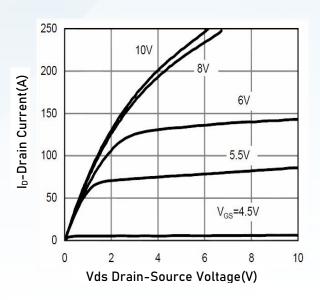
N-Channel MOSFET

Absolute Maximum Ratings (Tc=25℃ unless otherwise noted)

Symbol	Parameter	Rating	Units
V _{DS}	Drain- Source Voltage	80	V
V _{GS}	Gate Source Voltage	±20	V
I _D @T _C =25 ℃	Continuous Drain Current ¹	120	А
I _D @T _C =100 ℃	Continuous Drain Current ¹	76	Α
I _{DM}	Pulsed Drain Current ³	480	А
E _{AS} ,E _{AR}	Avalanche Energy ⁵	113.2	mJ
I _{AS} ,I _{AR}	Avalanche Current ⁵	47.6	А
P _D @T _C =25 °C	Total Power Dissipation ⁴	184	W
T _{STG}	Storage Temperature Range	-55 to 150	$^{\circ}$
TJ	Operating Junction Temperature Range	-55 to 150	$^{\circ}$
R _{eJC}	Thermal Resistance, Junction-to-Case ²	0.68	°C/W
R _{eJA}	Thermal Resistance Junction-Ambient ²	62	°C/W

Electrical Characteristics (TC=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA		80		V
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =10A		2.5	3.0	mΩ
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	2	3	4	V
I _{DSS}	Drain-Source Leakage Current	V _{DS} =80V , V _{GS} =0V , T _J =25℃			1	uA
1000		V _{DS} =64V, V _{GS} =0V , T _J =125℃			10	
I _{GSS}	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA
g FS	Forward Transconductance	V _{DS} =10V , I _D =10A		51.9		S
Qg	Total Gate Charge (4.5V)	V _{DS} =64V , V _{GS} =10V , I _D =10A		88	132	
Q _{gs}	Gate-Source Charge			10	15	nC
Q _{gd}	Gate-Drain Charge			24	32	
T _{d(on)}	Turn-On Delay Time	V_{DD} =30V, I_{DS} =40A, V_{GEN} =10V, R_{G} =6 Ω		20	40	
Tr	Rise Time			13	26	
T _{d(off)}	Turn-Off Delay Time			36	72	nS
T _f	Fall Time			18	36	
C _{iss}	Input Capacitance			6500		
Coss	Output Capacitance	V _{DS} =30V , V _{GS} =0V , f=1MHz		520		pF
C _{rss}	Reverse Transfer Capacitance			460		


Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Curren1,4	VG=VD=0V			120	Α
I _{SM}	Pulsed Source Current				240	Α
V _{SD}	Diode Forward Voltage2	V _{GS} =0V , I _{SD} =10A , T _J =25℃			0.7	V
T _{rr}	Reverse Recovery Time	I _S =10A,V _{GS} =40V,		42		nS
Qrr	Reverse Recovery Charge	di/dt=100A/µs TJ=25℃		66		nC

Notes:

- **1** . Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 1$ 0 sec.
- 3. Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤2 %.
- $\textbf{4.} \ \, \textbf{The data is theoretically the same as ID and IDM} \, , \, \textbf{in real applications} \, , \, \textbf{should be limited by total power dissipation}. \, \\$
- ${\bf 5}$. The EAS test condition is VDD =30V,VGS =10V,L=0.1mH,IAS =47.6A

Fig.1 Typical Output Characteristics

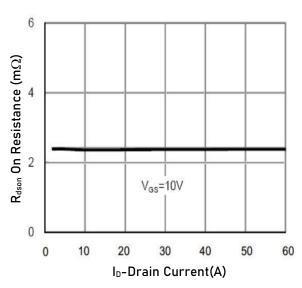


Fig.3 Drain-Source On Resistance

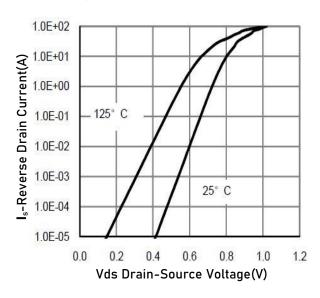


Fig.5 Forward Characteristics Of Reverse

N-Ch 80V Fast Switching MOSFETs

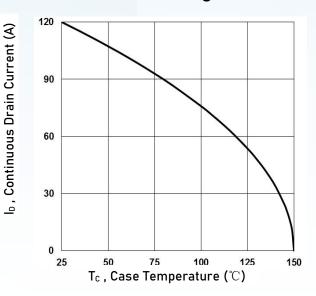


Fig.2 Drain Current

Fig.4 Normalized RDSON vs. T_J

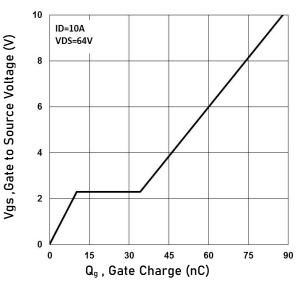


Fig.6 Gate-Charge Characteristics

N-Ch 80V Fast Switching MOSFETs

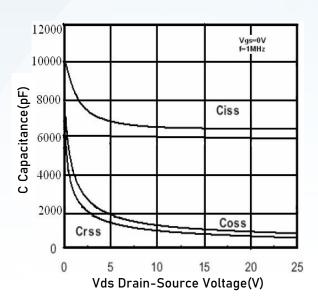


Fig.7 Capacitance

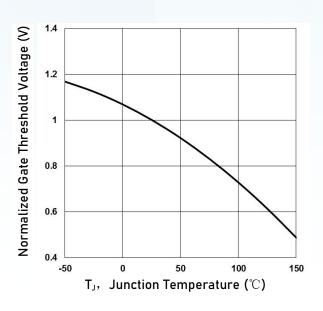


Fig.8 Normalized Vth vs. TJ

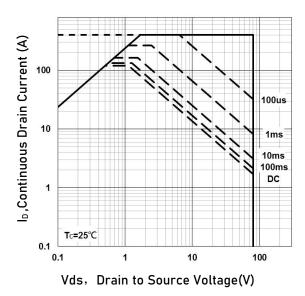
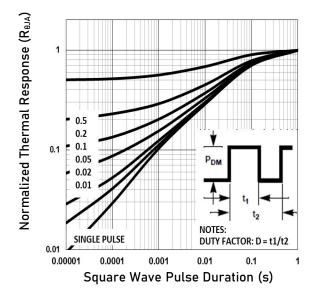
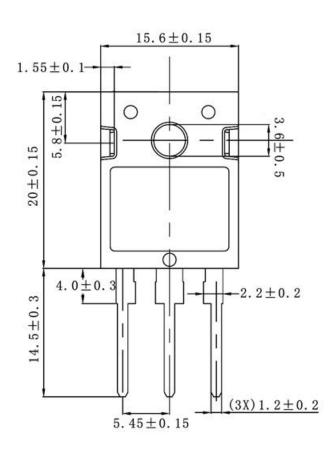
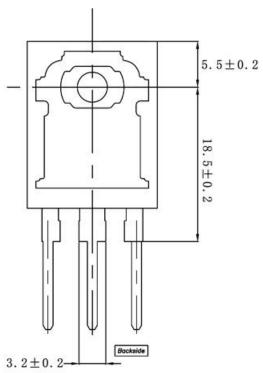
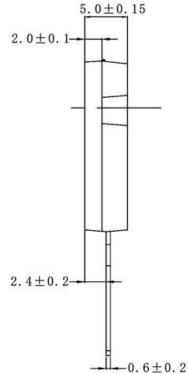


Fig.9 Safe Operating Area


Fig.10 Transient Thermal Impedance

TO-247 Package Information

Disclaimer

EVVOSEMI ("EVVO") reserves the right to make corrections, enhancements, improvements, and other changes to its products and services at any time, and to discontinue any product or service without notice.

EVVO warrants the performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used as deemed necessary by EVVO to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Customers should obtain and confirm the latest product information and specifications before final design, purchase, or use. EVVO makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does EVVO assume any liability for application assistance or customer product design. EVVO does not warrant or accept any liability for products that are purchased or used for any unintended or unauthorized application.

EVVO products are not authorized for use as critical components in life support devices or systems without the express written approval of EVVOSEMI.

The EVVO logo and EVVOSEMI are trademarks of EVVOSEMI or its subsidiaries in relevant jurisdictions. EVVO reserves the right to make changes without further notice to any products herein.