

ESD

TVS

MOS

LDO

Diode

Sensor

DC-DC

Product Specification

Domestic Part Number	74HC595D
Overseas Part Number	74HC595D
▶ Equivalent Part Number	74HC595D

8-bit serial-in/serial or parallel-out shift register with output latches; 3-state

Description:

74HC595 is a high-speed silicon gate CMOS device with pins compatible with low-power Schottky TTL circuits (LSTTL). It complies with JEDEC standard No.7A. It consists of eight serial shift registers with storage registers and three state outputs. The shift register and storage register have separate clocks. Data in shift clock SH_ When the rising edge of CP arrives, shift transmission is performed, while the storage clock ST_

When the rising edge of CP arrives, it is transferred from the shift register to the storage register. If two clocks are connected together, the data on the shift register is always one clock pulse ahead of the storage register. The shift register has a serial input (DS) and a cascaded serial output (Q7 '), as well as an asynchronous reset (effective at low levels).

The storage register has an eight bit parallel bus driver output with a three state output. When the output enable end (OE) is at low level, the output end is normal output. Conversely, when OE is at high level, the output is in high resistance off state.

Features:

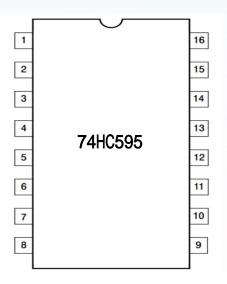
- -Eight bit serial input
- -Eight bit serial or parallel output
- -Shift output frequency ESD protection

function at 100MHz (typical value)

-A storage register with a three state output and a shift register with direct zeroing

Application:

- -serial parallel conversion
- -Remote control memory retention


device

Absolute Maximum Ratings

parameter	symbol	Test conditions	min	max	unit
supply voltage	Vcc		-0. 5	7	V
Input diode current	IIK	VI<-0.5V or VI>Vcc+0.5V	-	±20	mA
Output diode current	1оК	Vo<-0.5V or Vo>Vcc+0.5V	-	±20	mA
Output pouring		-0.5V <vo<vcc+0.5v< td=""><td>-</td><td></td><td></td></vo<vcc+0.5v<>	-		
current or pulling	10	Q' standard output	-	±25	mA
current		Q0~Q7 bus drive output	_	±35	mA
Vcc, GND current	Icc, IGND		_	±70	mA
storage temperature	Tstg		-65	150	$^{\circ}$
consumption	Ptot	Tamb=-40 to 125℃	_	500	mW

Pin Assignment:

DIP/SOP16

pin no.	symbol	function description
1	Q1	Parallel output terminal
2	Q2	Parallel output terminal
3	Q3	Parallel output terminal
4	Q4	Parallel output terminal
5	Q5	Parallel output terminal
6	Q6	Parallel output terminal
7	Q7	Parallel output terminal
8	GND	grounding(OV)
9	Q7'	Serial output terminal
10	MR	Main reset (effective at low level)
11	SH_CP	Shift register clock input
12	ST_CP	Memory register clock input terminal
13	ŌĒ	Output enabling terminal(effective at low level)
14	DS	Serial input terminal
15	Q0	Parallel output terminal
16	Vcc	power supply

menubar

	input					tput		
SH_CP	ST_CP	ŌĒ	MR	DS	Q7'	Qn	function	
×	×	L	L	×	L	n. c	MR only resets the shift register when the power level is low	
×	†	L	L	×	L	L	Shift register transfers null values to storage registers	
×	×	Н	L	×	L	Z	Clear the shift register to zero; Parallel output in	
†	×	L	Н	Н	Q6'	n. c	The logic high level is transmitted from the input to the shift register of segment 0; The data of all shift registers is sequentially transmitted under the action of the shift clock	
×	1	L	Н	×	n. C,	Qn'	All shift register data is transmitted to the corresponding storage registers under the action of the storage clock	
†	t	L	Н	×	Q6'	Qn'	The shift register is sequentially passed back; Simultaneously shifting the register to transfer the previous state to the corresponding storage register and output	

Note: H=high level L=low level Z=high resistance closed state X=irrelevant quantity

falling edge n.c.=no change

rising edge

function diagram

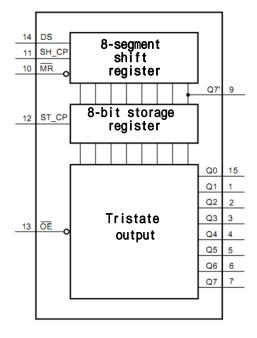


Figure 3 Functional Diagram

logic diagram

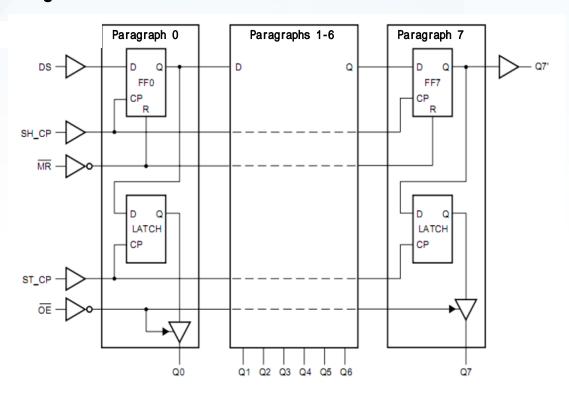


Figure 4 Logic Diagram

Timing Diagram

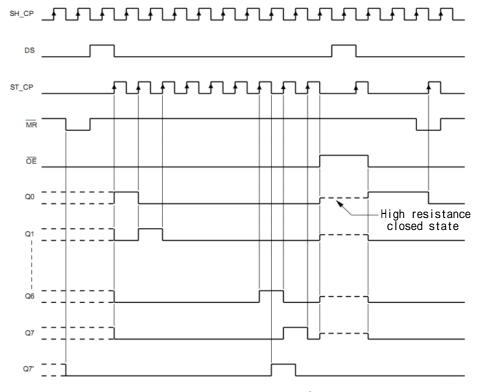


Figure 5 Timing Chart

DC parameters (ambient temperature: -40~+125 ; all typical values are tested at 25)

parameter	symbol	Test condit	ions	min	typ	max	unit
parameter	Symbol	condition	Vcc(V)			IIIdX	
			2	1.5	1.2	_	V
High Level Input Voltage	VIH		4. 5	3. 15	2. 4	_	V
			6	4. 2	3. 2	-	V
low level input	WII		2	_	0.8	0.5	V
voltage	VIL		4. 5 6	_	2. 1	1. 35	V
		VI=VIH or VIL	O		2.8	1.8	V
			2	1. 9	2	_	V
		All outputs	4. 5	4. 4	4. 5	_	V
		1o=-20uA	6	5. 9	6	_	V
high level output voltage	VOH	Q7'Standard output terminal lo=-4.0mA lo=-5.2mA	4. 5 6	3. 84 5. 34	4. 32 5. 81	-	V V
		Qn bus drive					
		output 10=-6.0mA 10=-7.8mA	4. 5 6	3. 84 5. 34	4. 32 5. 81	_ _	V V
		VI=VIH or VIL					
		All outputs lo=-20uA	2 4. 5 6	_ _ _	0 0 0	0. 1 0. 1 0. 1	V
Low Level Output Voltage	VOL	output terminal				0.1	•
Low Level output vortage	VOL	1o=-4. OmA	4.5	_	0.15	0.33	
		1o=-5. 2mA	6	_	0.16	0.33	V
		output					
		1o=-6.0mA	4. 5	_	0. 16	0.33	
		1o=-7.8mA	6	_	0. 16	0.33	V
Input peak current	IL	VI=Vcc or GND	6	_	_	±1	uA
Three state output high resistance current	loz	VI=VIH or VIL Vo=Vcc or GND	6	_	_	±5	uA
Static power supply current	Icc	VI=Vcc or GND 1o=0	6	_	-	80	uA

ambient temperature: -40 ~+125

parameter	symbol	Test conditions		min typ		yp max	unit
per ane cer	Symbol	condition	Vcc(V)	IIIIII	сур	max	unit
			2	1.5	-	-	V
High Level Input Voltage	VIH		4. 5	3. 15	-	-	V
			6	4.2	-	-	V
			2	-	-	0. 5	V
low level input voltage	VIL		4. 5	-	-	1.35	V
			6	-	-	1.8	V
		VI=VIH or VIL					
		ALL outputs	2	1.9	-	-	V
		1o=-20uA	4. 5	4.4	-	-	V
		1020uA	6	5. 9	-	-	V
high level output voltage	VOH	Q7'Standard output terminal 10=-4.0mA	4. 5	3. 7	_	_	V
night level output voltage	VOII	10= 4. OllA 10=-5. 2mA	6	5. 2	_	_	V
		Qn bus drive output lo=-6.0mA lo=-7.8mA	4.5	3. 7 5. 2	-	-	V
		VI=VIH or VIL					
		ALL outputs 1o=-20uA	4. 5	-	-	0. 1	V
Low Level Output Voltage	VOL	Q7'Standard output terminal lo=-4.0mA	4. 5	-	-	0.4	V
		Qn bus drive output lo=-6.0mA	4. 5	-	-	0.4	V
Input peak current	ILI	VI=Vcc or GND	5. 5	-	-	±1	uA
Three state output high resistance current	Ioz	VI=VIH or VIL Vo=Vcc or GND	5. 5	-	-	±10	uA
Static power supply current	Icc	VI=Vcc or GND lo=0	5. 5	-	-	160	uA

AC parameters (GND=0V; tr-tf-6ns; CL=50Pf)

ambient temperature: 25

	1 1	Test condit	ions				• .
parameter	symbol	wave form	Vcc(V)	min	typ	max	unit
			2	_	52	160	ns
Transmission delay time		See Figure 6	4. 5	_	19	32	ns
from SH_CP to Q7'	- DIII /- DI II		6	_	15	27	ns
	tPHL/tPLH		2	-	55	175	ns
ST_CP to Qn transmission		See Figure 7	4. 5	_	20	35	ns
delay time			6	_	16	30	ns
			2	_	47	175	ns
Transmission delay time	tPHL	See Figure 9	4. 5	_	17	35	ns
from MR to Q7'			6	-	14	30	ns
OE causes Qn terminal to			2	_	47	30	ns
transition from high	. D		4. 5	_	17	150	ns
resistance state to enable output time	tPZH/tPZL	See Figure 10	6	-	14	30	ns
OF 11 11 0			2	_	41	26	ns
OE enables the Qn terminal to output from			4.5	_	15	150	ns
enable to high resistance state time	tPHZ/tPLZ	See Figure 10	6	-	12	30	ns
		See Figure 6	2	75	17	26	ns
Shift clock pulse width (high or low level)			4. 5	15	6	_	ns
(High of low level)			6	13	5	_	ns
Store clock pulse width			2	75	11		ns
	tW	See Figure 7	4. 5	15	4	_	ns
(high or low level)			6	13	3	_	ns
Wain mand and a middle		See Figure 9	2	75	17		ns
Main reset pulse width (low level)			4. 5	15	6	-	ns
(10w level)			6	13	5		ns
			2	50	11	-	ns
Establishment time from DS to SH_CP		See Figure 8	4.5	10	4		ns
D5 t0 5H_Cl	tau		6	9	3	_	ns
	tsu		2	75	22	-	ns
Establishment time from SH_CP to ST_CP		See Figure 7	4.5	15	8	_	ns
SII_CI to SI_CI			6	13	7	_	ns
DO 1 GH OD - 1 - 1			2	3	-6	_	ns
DS to SH_CP retention	th	See Figure 8	4. 5	3	-2		ns
time			6	3	-2		ns
MD 11 CW CD			2	50	-19	-	ns
MR enables SH CP reset	trem	See Figure 9	4. 5	10	-7	_	ns
time			6	9	-6	-	ns
Windows I and I			2	9	30	_	MHZ
Minimum clock pulse	fmax	See Figure 6,7	4. 5	30	91	-	MHZ
width of SH_CP or ST_CP			6	35	108	_	MHZ

ambient temperature: -40 ~85

	Test conditions						
parameter	symbol	wave form	Vcc(V)	min	typ	max	unit
m			2	_	-	200	ns
Transmission delay time from SH_CP to Q7'		See Figure 6	4.5	_	_	40	ns
110m Sn_cr to Q1	+DIII /+DI II		6	_	_	34	ns
	tPHL/tPLH		2	_	_	220	ns
ST_ CP to Qn transmission delay time		See Figure 7	4.5	_	_	44	ns
delay time			6	_	_	37	ns
			2	_	_	220	ns
Transmission delay time from MR to Q7'	tPHL	See Figure 9	4.5	_	_	44	ns
Troil Mr. to Q1			6	_	-	37	ns
OE causes Qn terminal to			2	-	-	190	ns
transition from high	tPZH/tPZL	See Figure 10	4. 5	_	-	38	ns
resistance state to enable			6	_	-	33	ns
OE enables the Qn			2	_	-	190	ns
terminal to output from	tPHZ/tPLZ	See Figure 10	4. 5	_	-	38	ns
enable to high resistance			6	_	_	33	ns
	tW	See Figure 6 See Figure 7	2	95	_	_	ns
Shift clock pulse width			4. 5	19	-	-	ns
(high or low level)			6	16	_	_	ns
			2	95	_	_	ns
Store clock pulse width			4. 5	19	-	-	ns
(high or low level)			6	16	_	_	ns
			2	95	_	_	ns
Main reset pulse width		See Figure 9	4. 5	19	-	-	ns
(low level)			6	16	_	_	ns
			2	65	-	_	ns
Establishment time from		See Figure 8	4. 5	13	-	-	ns
DS to SH_ CP			6	11	-	_	ns
	tsu		2	95	_	_	ns
Establishment time from		See Figure 7	4. 5	19	-	-	ns
SH_ CP to ST_ CP			6	16	_	_	ns
			2	3	-	-	ns
DS to SH_ CP retention	th	See Figure 8	4. 5	3	-	_	ns
time			6	3	_	_	ns
			2	65	-	_	ns
MR enables SH_ CP reset	trem	See Figure 9	4. 5	13	-	_	ns
time	CT GIII		6	11		_	ns
			2	4.8	_	_	MHZ
Minimum clock pulse	fmax	See Figure 6,7	4.5	24	_	_	MHZ
width of SH_ CP or ST_ CP	LIIGA	500 118410 0,1	6	28	_	_	MHZ
				20			111112

ambient temperature: -40 ~125

	1 1	Test conditi	ions				
parameter	symbol	wave form	Vcc(V)	min	typ	max	unit
Thomasian dalay time			2	-	-	240	ns
Transmission delay time from SH_ CP to Q7'		See Figure 6	4. 5	-	-	48	ns
	+DIII /+DIII		6	-	-	41	ns
CT CD to On town in its	tPHL/tPLH		2	-	-	265	ns
ST_ CP to Qn transmission delay time		See Figure 7	45	-	-	53	ns
deray time			6	-	-	45	ns
T			2	-	-	265	ns
Transmission delay time from MR to Q7'	tPHL	See Figure 9	4. 5	-	-	53	ns
110m will to Q1			6	-	-	45	ns
OE causes Qn terminal to			2	-	-	225	ns
transition from high	tPZH/tPZL	See Figure 10	4. 5	-	-	45	ns
resistance state to enable			6	-	-	35	ns
OE enables the Qn			2	_	-	225	ns
terminal to output from	tPHZ/tPLZ	See Figure 10	4. 5	-	-	45	ns
enable to high resistance			6	-	-	35	ns
Shift clock pulse width			2	110	-	-	ns
-		See Figure 6 tW See Figure 7	4. 5	22	-	-	ns
(high or low level)			6	19	-	-	ns
Store clock pulse width			2	110	-	-	ns
	tW		4. 5	22	-	-	ns
(high or low level)			6	19	-	-	ns
Main reset pulse width			2	110	-	-	ns
•		See Figure 9	4. 5	22	-	ı	ns
(low level)			6	19	-	-	ns
B			2	75		-	ns
Establishment time from		See Figure 8	4.5	15	-	-	ns
DS to SH_ CP	4		6	13	-	-	ns
F-4-1-1:-1	tsu		2	110	-	-	ns
Establishment time from SH_ CP to ST_ CP		See Figure 7	4. 5	22	-	-	ns
311_ C1 t0 31_ C1			6	19	-	-	ns
DG 1 GH GD - 1			2	3	-	-	ns
DS to SH_ CP retention time	th	See Figure 8	4. 5	3	-	-	ns
time			6	3	-	-	ns
WD 1.1 - 2W - 2D			2	75	-	-	ns
MR enables SH_ CP reset	trem	See Figure 9	4. 5	15	-	-	ns
time			6	13	-	-	ns
			2	4	-	-	MHZ
Minimum clock pulse	fmax	See Figure 6,7	4. 5	20	-	-	MHZ
width of SH_ CP or ST _ CP			6	24	-	-	MHZ

AC waveform

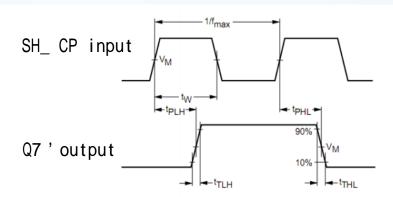


Figure 6: The above figure shows the transmission delay time, shift clock pulse width, and maximum shift clock frequency

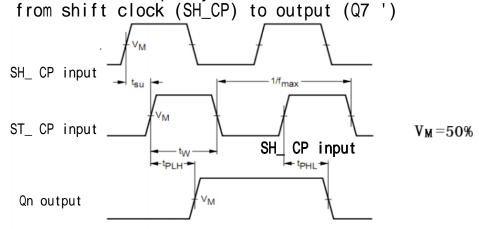


Figure 7: The above figure shows the transmission delay time from storage clock (ST_CP) to output (Qn), storage clock pulse width, and establishment time from shift clock to storage clock

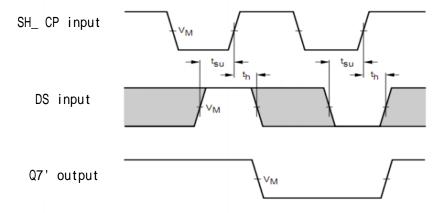


Figure 8: The above figure shows the establishment and retention time of DS input
Note: The shaded portion indicates that the input signal has no effect on the output at this time

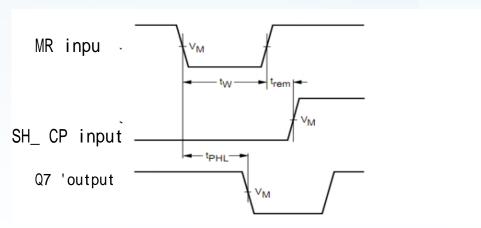


Figure 9: The above figure shows the pulse width of the main reset (MR), the transmission delay time from the main reset to the output (Q7 '), and the reset time from the main reset to the shift clock (SH CP)

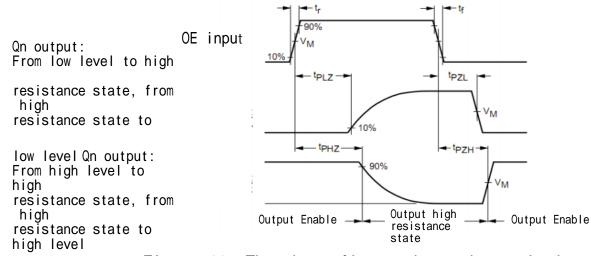
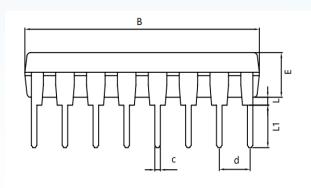
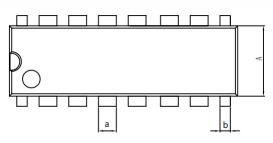
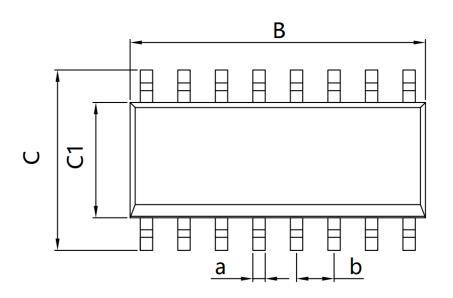



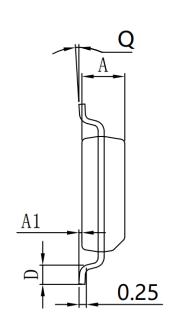

Figure 10: The above figure shows the variation time of the three state output with the output enable end



Pin Assignment:

DIP16





Dimensions In Millimeters										
Symbol:	Min:	Max:	Symbol:	Min:	Max:					
A	6. 100	6. 680	L	0. 500	0.800					
В	18. 940	19. 560	a	1.524 TYP						
D	8. 200	9. 200	b	0.889 TYP						
D1	7. 42	7. 820	С	0. 457	7 TYP					
Е	3. 100	3. 550	d	2. 540) TYP					
L	0. 500	0.800								

S0P16

Dimensions In Millimeters									
Symbol:	Min:	Max:	Symbol:	Min:	Max:				
A	1. 225	1. 570	D	0.400	0.950				
A1	0. 100	0. 250	Q	0°	8°				
В	9.800	10.00	a	0.420 TYP					
С	5. 800	6. 250	b	1.270 TYP					
C1	3.800	4. 000							

Disclaimer

EVVOSEMI ("EVVO") reserves the right to make corrections, enhancements, improvements, and other changes to its products and services at any time, and to discontinue any product or service without notice.

EVVO warrants the performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used as deemed necessary by EVVO to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Customers should obtain and confirm the latest product information and specifications before final design, purchase, or use. EVVO makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does EVVO assume any liability for application assistance or customer product design. EVVO does not warrant or accept any liability for products that are purchased or used for any unintended or unauthorized application.

EVVO products are not authorized for use as critical components in life support devices or systems without the express written approval of EVVOSEMI.

The EVVO logo and EVVOSEMI are trademarks of EVVOSEMI or its subsidiaries in relevant jurisdictions. EVVO reserves the right to make changes without further notice to any products herein.