

ESD

TVS

MOS

LDO

Diode

Sensor

DC-DC

Product Specification

Domestic Part Number	74HC123D
Overseas Part Number	74HC123D
▶ Equivalent Part Number	74HC123D

Dual Retriggerable Monostable Multivibrator with Reset

General Description

The 74HC123 are high-speed Si-gate CMOS devices and are pin compatible with Low-power Schottky TTL (LSTTL).

The 74HC123 are dual retriggerable monostable multivibrators with output pulse width control by three methods:

- 1. The basic pulse is programmed by selection of an external resistor (R_{EXT}) and capacitor (C_{EXT}).
- 2. Once triggered, the basic output pulse width may be extended by retriggering the gated active LOW-going edge input (nA) or the active HIGH-going edge input (nB). By repeating this process, the output pulse period (nQ=HIGH, nQ=LOW) can be made as long as desired. Alternatively an output delay can be terminated at any time by a LOW-going edge on input nRD, which also inhibits the triggering.
- 3. An internal connection from $n \overline{RD}$ to the input gates makes it possible to trigger the circuit by a HIGH-going signal at input $n \overline{RD}$.

Features

- DC triggered from active HIGH or active LOW inputs
- Retriggerable for very long pulses up to 100% duty factor
- Direct reset terminates output pulse
- Specified from 0 °C to +70 °C
- Packaging information: DIP16/SOP16

Absolute Maximum Ratings

(Voltages are referenced to GND (ground=0V), unless otherwise specified.)

Parameter	Symbol		Conditions	Min.	Max.	Unit	
supply voltage	Vcc		-	-0.5	+7.0	\ \	
input clamping current	I _{IK}	V ₁ < -0.5	$5V \text{ or } V_1 > V_{CC} + 0.5V$	-	±20	mA	
output clamping current	lok	V _O < -0.5	$5V \text{ or } V_{\text{O}} > V_{\text{CC}} + 0.5V$	-	±20	mA	
output current	lo	except for pins nREXT/CEXT; Vo= -0.5V to (Vcc+0.5V)		-	±25	mA	
supply current	Icc		-	-	50	mA	
ground current	I _{GND}		-	-	-50	mA	
storage temperature	Tstg		-	-65	+150	$^{\circ}$ C	
total power dissipation	Ptot	-		-	500	mW	
	_	100	DIP	24	45	°C	
soldering temperature	TL 1	10s	108	SOP	2	50	$^{\circ}$ C

Block Diagram And Pin Description

Block Diagram

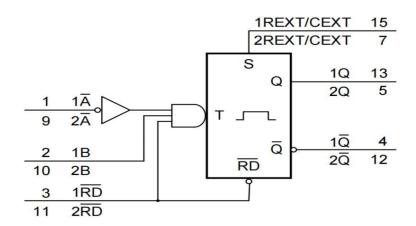


Figure 1. Logic symbol

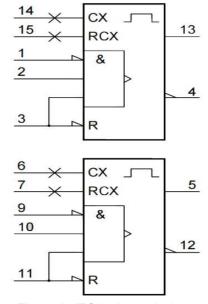


Figure 2. IEC logic symbol

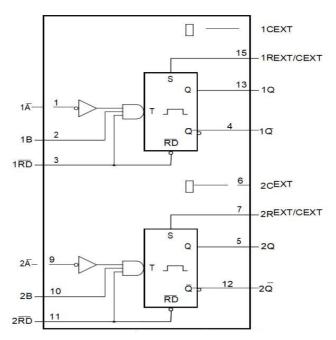


Figure 3. Functional diagram

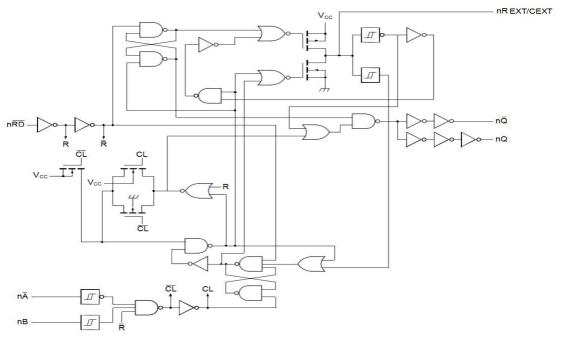


Figure 4. Logic diagram

Pin Configurations

DIP-16/SOP-16/

Pin Description

Pin No.	Pin Name	Description	
1	1Ā	negative-edge triggered input 1	
2	1B	positive-edge triggered input 1	
3	1RD	direct reset LOW and positive-edge triggered input 1	
4	1ℚ	active LOW output 1	
5	2Q	active HIGH output 2	
6	2CEXT	external capacitor connection 2	
7	2REXT/CEXT	external resistor and capacitor connection 2	
8	GND	ground (0V)	
9	2⊼	negative-edge triggered input 2	
10	2B	positive-edge triggered input 2	
11	2RD	direct reset LOW and positive-edge triggered input 2	
12	2 <u>Q</u>	active LOW output 2	
13	1Q	active HIGH output 1	
14	1CEXT	external capacitor connection 1	
15	1REXT/CEXT	external resistor and capacitor connection 1	
16	Vcc	supply voltage	

Function Table

	Input			tput
nRD	nĀ	nB	nQ	nℚ
L	X	X	L	Н
X	Н	X	L	Н
X	X	L	L	Н
Н	L	1		
Н	1	Н	Л	77
↑	L	Н		77

Note

- 1. H=HIGH voltage level; L=LOW voltage level; X=don't care.
- 2. ↑=LOW-to-HIGH transition; ↓=HIGH-to-LOW transition.
- 4. If the mono stable was triggered before this condition was established, the pulse will continue as programmed.

Recommended Operating Conditions

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
supply voltage	Vcc		-		5.0	6.0	V
input voltage	Vı		-		-	VCC	V
output voltage	Vo	-		0	-	VCC	V
			V _{CC} =2.0V	-	-	625	ns/V
input transition rise	Δt/ΔV	nRD input	V _{CC} =4.5V	-	1.67	139	ns/V
and fall rate			V _{CC} =6.0V	-	-	83	ns/V
ambient temperature	Tamb		-	-40	-	+105	°C

Electrical Characteristics

DC Characteristics 1(T_{amb}=25℃, voltages are referenced to GND (ground=0V), unless otherwise specified.)

Parameter	Symbol	(Conditions	Min.	Тур.	Max.	Unit
			V _{CC} =2.0V	1.5	1.2	-	V
HIGH-level	V _{IH}		V _{CC} =4.5V	3.15	2.4	-	V
input voltage			V _{CC} =6.0V	4.2	3.2	-	V
1.0\\\\\			V _{CC} =2.0V	-	0.8	0.5	V
LOW-level	V _{IL}		V _{CC} =4.5V	-	2.1	1.35	V
input voltage			V _{CC} =6.0V	-	2.8	1.8	V
			I _O =-20uA; V _{CC} =2.0V	1.9	2.0	-	V
			I _O =-20uA; V _{CC} =4.5V	4.4	4.5	-	V
HIGH-level	Voh	V _{OH} V _I =V _{IH} or V _{IL}	Io=-20uA; Vcc=6.0V	5.9	6.0	-	V
output voltage			I _O =-4mA; V _{CC} =4.5V	3.98	4.32	-	V
			I _O =-5.2mA; V _{CC} =6.0V	5.48	5.81	-	V
			Io=20uA; Vcc=2.0V	-	0	0.1	V
1.0\4/1=1			I _O =20uA; V _{CC} =4.5V	-	0	0.1	V
LOW-level	VoL	$V_I = V_{IH}$ or V_{IL}	I _O =20uA; V _{CC} =6.0V	-	0	0.1	V
output voltage			Io=4mA; Vcc=4.5V	-	0.15	0.26	V
			I _O =5.2mA; V _{CC} =6.0V	-	0.16	0.26	V
input leakage current	l ₁	V _I =V _{CC} or GND; V _{CC} =6.0V		-	-	±0.1	uA
supply current	lcc	V _i =V _{CC} or GND; I _O =0A; V _{CC} =6.0V		-	-	8.0	uA
input capacitance	Cı		-	-	3.5	-	pF

DC Characteristics 2

(Tamb=-40 $^{\circ}\!\!\mathrm{C}$ to +85 $^{\circ}\!\!\mathrm{C}$, voltages are referenced to GND (ground=0V), unless otherwise specified.)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit	
		\	VCC=2.0V	1.5	-	-		
HIGH-level	VIH	\	VCC=4.5V	3.15	-	-	V	
input voltage		\	VCC=6.0V	4.2	-	-	V	
1.004/1		\	VCC=2.0V	-	-	0.5	V	
LOW-level	VIL	\	VCC=4.5V	-	-	1.35	V	
input voltage		\	VCC=6.0V	-	-	1.8	V	
			IO=-20uA; VCC=2.0V	1.9	-	-	V	
			IO=-20uA; VCC=4.5V	4.4	-	-	V	
HIGH-level	V _{OH}	V _{OH}	V _{OH} VI = VIH or VIL	IO=-20uA; VCC=6.0V	5.9	-	-	V
output voltage			IO=-4mA; VCC=4.5V	3.84	-	-	V	
			IO=-5.2mA; VCC=6.0V	5.34	-	-	V	
			IO=20uA; VCC=2.0V	-	-	0.1	V	
1.0\4/1=::=1			IO=20uA; VCC=4.5V	-	-	0.1	V	
LOW-level	Vol	VI = VIH or VIL	IO=20uA; VCC=6.0V	-	-	0.1	V	
output voltage			IO=4mA; VCC=4.5V	-	-	0.33	V	
			IO=5.2mA; VCC=6.0V	-	-	0.33	V	
input leakage current	lı	VI=VCC or GND; VCC=6.0V		-	-	±1.0	uA	
supply current	Icc	VI=VCC or G	ND; IO=0A; VCC=6.0V	-	-	80	uA	

DC Characteristics 3

(Tamb=-40°C to +105°C, voltages are referenced to GND (ground=0V), unless otherwise specified.)

Parameter	Symbol	c	Conditions	Min.	Тур.	Max.	Unit	
		\	VCC=2.0V	1.5	-	-	V	
HIGH-level	VIH	\	/CC=4.5V	3.15	-	-	V	
input voltage		\	/CC=6.0V	4.2	-	-	V	
		\	/CC=2.0V	-	-	0.5	V	
LOW-level	\ , a	\	/CC=4.5V	-	-	1.35	V	
input voltage	VIL	\	/CC=6.0V	-	-	1.8	V	
			IO=-20uA; VCC=2.0V	1.9	-	-	V	
		VI = VIH or VIL	IO=-20uA; VCC=4.5V	IO=-20uA; VCC=4.5V	4.4	-	-	V
HIGH-level	VOH		IO=-20uA; VCC=6.0V	5.9	-	-	V	
output voltage			IO=-4mA; VCC=4.5V	3.7	-	-	V	
			IO=-5.2mA; VCC=6.0V	5.2	-	-	V	
			IO=20uA; VCC=2.0V	-	-	0.1	V	
			IO=20uA; VCC=4.5V	-	-	0.1	V	
LOW-level	VOL	VI = VIH or VIL	IO=20uA; VCC=6.0V	-	-	0.1	V	
output voltage			IO=4mA; VCC=4.5V	-	-	0.4	V	
			IO=5.2mA; VCC=6.0V	-	-	0.4	V	
input leakage current	П	VI=VCC or GND;VCC=6.0V		-	-	±1.0	uA	
supply current	ICC	VI=VCC or G	ND; IO=0A; VCC=6.0V	-	-	160	uA	

AC Characteristics 1

(T_{amb}=25°C, voltages are referenced to GND (ground=0V); C_L=50pF, unless otherwise specified.)

Parameter	Symbol	Co	nditions	Min.	Тур.	Max.	Unit		
		nRD, nA, nB to	VCC=2.0V	-	83	255	ns		
		nQ or n $\overline{\mathbb{Q}}$;	VCC=4.5V	-	30	51	ns		
		CEXT=0pF;	VCC=5.0V; CL=15pF	-	26	-	ns		
		REXT=5kΩ; see Figure 6[1]	VCC=6.0V	-	24	43	ns		
propagation delay	tpd	nRD(reset) to nQ	VCC=2.0V	-	66	215	ns		
		or $n\overline{\mathbb{Q}}$;	VCC=4.5V	-	25	43	ns		
		CEXT=0pF;	VCC=5.0V; CL=15pF	-	20	-	ns		
		REXT=5kΩ; see Figure 6	VCC=6.0V	-	19	37	ns		
			VCC=2.0V	-	19	75	ns		
transition time	tt	see Figure 6[1]	VCC=4.5V	-	7	15	ns		
			VCC=6.0V	-	6	13	ns		
		- T + OW	VCC=2.0V	100	8	-	ns		
		nĀ LOW;	VCC=4.5V	20	3	-	ns		
	see Figure 7	VCC=6.0V	17	2	-	ns			
	t _w		- F 1 11 C 1 1	VCC=2.0V	100	17	-	ns	
				nB HIGH;	VCC=4.5V	20	6	-	ns
				see Figure 7	VCC=6.0V	17	5	-	ns
pulse width		777	VCC=2.0V	100	14	-	ns		
		nRD LOW;	VCC=4.5V	20	5	-	ns		
		see Figure 8	VCC=6.0V	17	4	-	ns		
		nQ HIGH and nQ	CEXT=100nF; REXT=10kΩ	-	450	-	us		
		LOW; VCC=5.0V; see Figure 7, 8[2]	CEXT=0pF; REXT=5kΩ	-	75	-	ns		
retrigger time	trtrig	REXT=5k	CEXT=0pF; :Ω; VCC=5.0V; :igure 7 ^{[3][4]}	-	110	-	ns		
external timing		Finance 7	VCC=2.0V	10	-	1000	kΩ		
resistor	REXT	see Figure 7	VCC=5.0V	2	-	1000	kΩ		
external timing capacitor	СЕХТ	VCC=5.0V	; see Figure 9 ^[4]	-	-	-	pF		
power dissipation capacitance	$C_{\sf PD}$	per monostable	e; VI=GND to VCC ^[5]	-	54	-	pF		

Note:

- tpd is the same as t_{PLH} and $t_{\text{PHL}};$ tt is the same as $t_{\text{TH}}L$ and t_{TLH}
- 1. **2**. For other REXT and CEXT combinations see Figure 9. If CEXT>10nF, the next formula is valid.

tw=K×R EXT×C EXT, where;

 t_W =typical output pulse width in ns;

REXT=external resistor in $k\Omega$; CEXT=external capacitor in pF;

 $\label{eq:K=constant} \textit{K=constant} = 0.45 \; \text{for VCC=} \\ \textit{5.0V} \; \text{and} \; 0.55 \; \text{for VCC=} \\ \textit{2.0V};$

The inherent test jig and pin capacitance at pins 15 and 7 (nREXT/CEXT) is approximately 7pF.

3. The time to retrigger the monostable multivibrator depends on the values of REXT and CEXT. The output pulse width will only be extended when the time between the active-going edges of the trigger input pulses meets the minimum retrigger time. If CEXT>10pF, the next formula (at VCC=5.0V) for the setup time of a retrigger pulse is valid:

trtrig=30+0.19×R $_{EXT}$ × C_{EXT} ^{0.9}+13× R_{EXT} ^{1.05}, where:

trtrig=retrigger time in ns;

 C_{EXT} =external capacitor in pF; R_{EXT} =external resistor in $k\Omega$.

The inherent test jig and pin capacitance at pins 15 and 7 (nREXT/CEXT) is 7pF.

- 4. When the device is powered-up, initiate the device via a reset pulse, when CEXT<50pF
- 5. CPD is used to determine the dynamic power dissipation (PD in uW).

 $P_D = C_{PD} \times V_{CC}{}^2 \times f \ i + \sum (C_L \times V_{CC}{}^2 \times f o) + 0.75 \times C_{EXT} \times V_{CC}{}^2 \times f o + D \times 16 \times V_{CC} \ where:$

fi=input frequency in MHz; fo=output frequency in MHz;

D=duty factor in %; CL=output load capacitance in pF;

VCC=supply voltage in V;

CEXT=timing capacitance in pF;

 \sum (CL×V_{CC}²×fo)=sum of outputs.

AC Characteristics 2

(T_{amb}=-40°C to +85°C, GND=0V; C_L=50pF, unless otherwise specified.)

Parameter	Symbol	Cor	nditions	Min.	Тур.	Max.	Unit
		nRD, nA, nB to	V _{CC} =2.0V	-	-	320	ns
		nQ or n $\overline{\mathbb{Q}}$;	V _{CC} =4.5V	-	-	64	ns
		C _{EXT} =0pF; R _{EXT} =5kΩ; see Figure 6[1]	V _{CC} =6.0V	-	-	54	ns
propagation delay	tpd	nRD(reset) to nQ	V _{CC} =2.0V	-	-	270	ns
		or $n\overline{\mathbb{Q}}$;	V _{CC} =4.5V	-	-	54	ns
		C_{EXT} =0pF; R_{EXT} =5k Ω ; see Figure 6	V _{CC} =6.0V	-	-	46	ns
		tt see Figure 6[1]	V _{CC} =2.0V	-	-	95	ns
transition time	tt		V _{CC} =4.5V	-	-	19	ns
			Vcc=6.0V	-	-	16	ns
		- -	V _{CC} =2.0V	125	-	-	ns
		nĀ LOW;	V _{CC} =4.5V	25	-	-	ns
		see Figure 7	V _{CC} =6.0V	21	-	-	ns
		- D LUGUE	V _{CC} =2.0V	125	-	-	ns
pulse width	tw	nB HIGH;	V _{CC} =4.5V	25	-	-	ns
	see Figure 7	Vcc=6.0V	21	-	-	ns	
			V _{CC} =2.0V	125	-	-	ns
		nRD LOW;	V _{CC} =4.5V	25	-	-	ns
		see Figure 8	V _{CC} =6.0V	21	-	-	ns

Note:

[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_t is the same as t_{THL} and t_{TLH} .

AC Characteristics 3

(T_{amb}=-40 $^{\circ}\mathrm{C}$ to +105 $^{\circ}\mathrm{C}$, GND=0V; C_L=50pF, unless otherwise specified.)

Parameter	Symbol	Cond	litions	Min.	Тур.	Max.	Unit
		nRD, nA, nB to	V _{CC} =2.0V	-	-	385	ns
		nQ or n \overline{Q} ; C _{EXT} =0pF;	V _{CC} =4.5V	-	-	77	ns
		R _{EXT} =5kΩ; see Figure 6[1]	V _{CC} =6.0V	-	-	65	ns
propagation delay	t pd	nRD(reset) to nQ or nQ;	V _{CC} =2.0V	-	-	325	ns
		C _{EXT} =0pF;	V _{CC} =4.5V	-	-	65	ns
		R _{EXT} =5kΩ; see Figure 6	V _{CC} =6.0V	-	-	55	ns
		t _t see Figure 6[1]	V _{CC} =2.0V	-	-	110	ns
transition time	tt		V _{CC} =4.5V	-	-	22	ns
			V _{CC} =6.0V	-	-	19	ns
			V _{CC} =2.0V	150	-	-	ns
n l o o i ol tilo		nĀ LOW; see Figure 7	V _{CC} =4.5V	30	-	-	ns
pulse width	t _{vv}	See Figure 7	V _{CC} =6.0V	26	-	-	ns
		nB HIGH;	V _{CC} =2.0V	150	-	-	ns
		and Figure 7	V _{CC} =4.5V	30	-	-	ns
		see Figure 7	V _{CC} =6.0V	26	-	-	ns
			V _{CC} =2.0V	150	-	-	ns
		nRD LOW; see Figure 8	V _{CC} =4.5V	30	-	-	ns
		See Figure 0	V _{CC} =6.0V	26	-	-	ns

Note:

^[1] t_{pd} is the same as t_{PLH} and $t_{\text{PHL}};\,t_{t}$ is the same as t_{THL} and $t_{\text{TLH}}.$

Testing Circuit

AC Testing Circuit

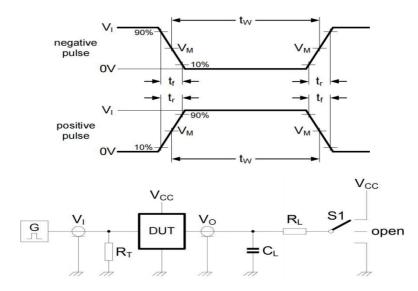


Figure 5. Test circuit for measuring switching times

Definitions for test circuit:

R_L=Load resistance.

 $\ensuremath{\text{C}_{\text{L}}}\text{=}\ensuremath{\text{Load}}$ capacitance including jig and probe capacitance.

 $R_{\text{T}}\text{=}\text{Termination}$ resistance should be equal to the output impedance Z_{o} of the pulsegenerator.

S1=Test selection switch.

AC Testing Waveforms

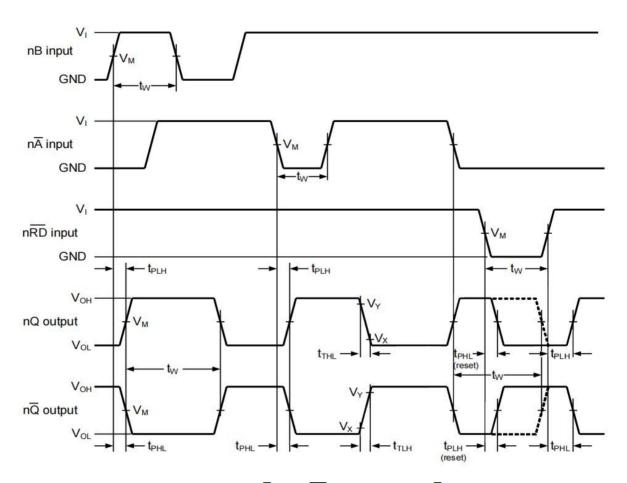


Figure 6. Propagation delays from inputs $(n\overline{A}, nB, n\overline{RD})$ to outputs $(nQ, n\overline{Q})$ and output transition times

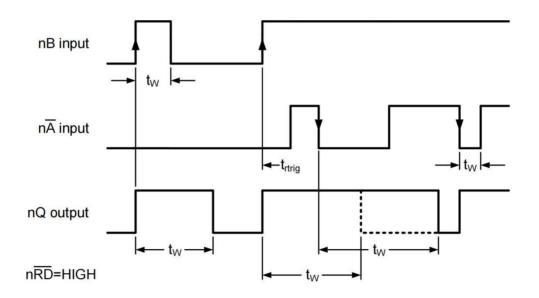
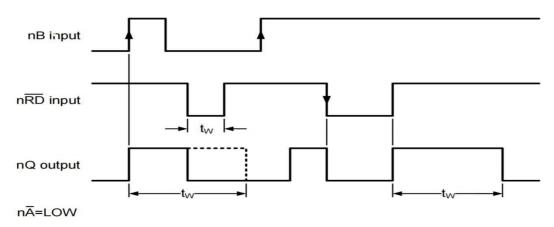
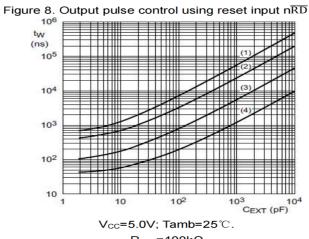
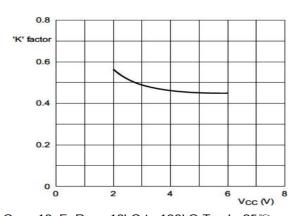




Figure 7. Output pulse control using retrigger pulse

 $R_{EXT}=100k\Omega$


 R_{EXT} =50 $k\Omega$

 R_{EXT} =10 $k\Omega$

 R_{EXT} =2 $k\Omega$

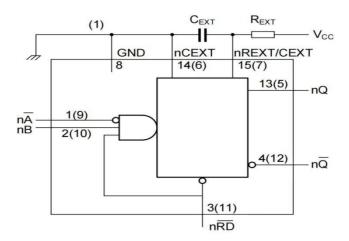
Figure 9. Typical output pulse width as a function of the external capacitor value

 $C_{EXT}\text{=}10nF;~R_{EXT}\text{=}10k\Omega~to~100k\Omega.Tamb\text{=}25\,^{\circ}\!\text{C}\,.$ Figure 10. 74HC123 typical 'K' factor as function of VCC

Measurement Points

Time	Input	Output	
Туре	VM	VM	
74HC123	0.5×V _{CC}	0.5×Vcc	

Test data


Туре	Inp	ut	Lo	S1 position	
	V _I	t _R ,t _F	C∟	R∟	t _{PHL} ,t _{PLH}
74HC123	Vcc	6ns	15pF,50pF	1kΩ	Open

Typical Application Circuit And Application Note

Timing component connections

The basic output pulse width is essentially determined by the values of the external timing components R_{EXT} and C_{EXT} .

For minimum noise generation it is recommended to ground pins 6 (2C_{EXT}) and 14 (1C_{EXT}) externally to pin 8 (GND).

Figure 11. Timing component connections

Power-up considerations

When the monostable is powered-up it may produce an output pulse, with a pulse width defined by the values of R_{EXT} and C_{EXT} . This output pulse can be eliminated using the circuit shown in Figure 12.

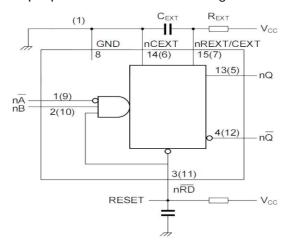


Figure 12. Power-up output pulse elimination circuit

Power-down considerations

A large capacitor C_{EXT} may cause problems when powering-down the monostable due to the energy stored in this capacitor. When a system containing this device is powered-down or a rapid decrease of V_{CC} to zero occurs, the monostable may sustain damage, due to the capacitor discharging through the input protection diodes. To avoid this possibility, use a damping diode (D_{EXT}) preferably a germanium or Schottky type diode able to withstand large current surges and connect as shown in Figure 13.

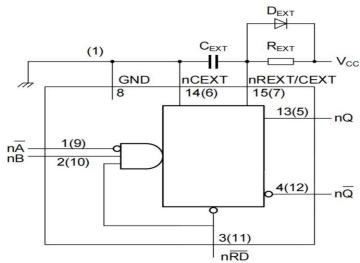
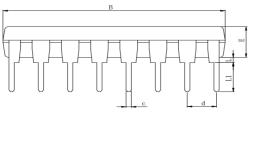
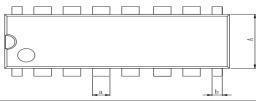
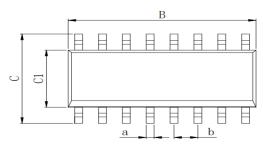



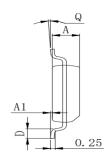
Figure 13. Power-down protection circuit



PIN Dimensions

DIP16





Dimensions In Millimeters(DIP16)											
Symbol:	Α	В	D	D1	E	L	L1	а	b	С	d
Min:	6.10	18.94	8.40	7.42	3.10	0.50	3.00	1.50	0.85	0.40	2.54.000
Max:	6.68	19.56	9.00	7.82	3.55	0.70	3.60	1.55	0.90	0.50	2.54 BSC

SOP16

Dimensions In Millimeters(SOP16)										
Symbol:	Α	A1	В	С	C1	D	Q	а	b	
Min:	1.35	0.05	9.80	5.80	3.80	0.40	0°	0.35	- 1.27 BSC	
Max:	1.55	0.20	10.0	6.20	4.00	0.80	8°	0.45		

Disclaimer

EVVOSEMI ("EVVO") reserves the right to make corrections, enhancements, improvements, and other changes to its products and services at any time, and to discontinue any product or service without notice.

EVVO warrants the performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used as deemed necessary by EVVO to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Customers should obtain and confirm the latest product information and specifications before final design, purchase, or use. EVVO makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does EVVO assume any liability for application assistance or customer product design. EVVO does not warrant or accept any liability for products that are purchased or used for any unintended or unauthorized application.

EVVO products are not authorized for use as critical components in life support devices or systems without the express written approval of EVVOSEMI.

The EVVO logo and EVVOSEMI are trademarks of EVVOSEMI or its subsidiaries in relevant jurisdictions. EVVO reserves the right to make changes without further notice to any products herein.