

ESD

TVS

MOS

LDO

Diode

Sensor

DC-DC

Product Specification

Domestic Part Number	74HC4053D / 74HCT4053D
Overseas Part Number	74HC4053D / 74HCT4053D
▶ Equivalent Part Number	74HC4053D / 74HCT4053D

Description

The 74HC/HCT4053 is a triple single-pole double-throw analog switch (3× SPDT) suitable for use in analog or digital 2:1 multiplexer/demultiplexer applications. Each switch features a digital select input (Sn), two independent inputs/outputs (nY0 and nY1) and a common input/output (nZ). A digital enable input (\bar{E}) is common to all switches. When \bar{E} is HIGH, the switches are turned off. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC} .

Features:

- Wide analog input voltage range from -4.5V to +4.5V
- Wide supply voltage range 74HC4053: from 3V to 9V
 - 74HC4055. Holli 5 V to
- Low ON resistance:
 - -80Ω (typical) at V_{CC} V_{EE} = 4.5 V
 - -70Ω (typical) at V_{CC} V_{EE} = 6.0 V
 - -60Ω (typical) at V_{CC} V_{EE} = 9.0 V
- Typical "break before make" built-in
- Specified from -40 °C to +125 °C
- Packaging information: DIP16/SOP16

Applications:

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

Absolute Maximum Ratings

(Voltages are referenced to GND (ground=0V), unless otherwise specified.)

Parameter	Symbol	Con	Min.	Max.	Unit	
supply voltage	V_{cc}		-0.5	+11.0	V	
input clamping current	I_{IK}	V _I <-0.5 V or	-	±20	mA	
switch clamping current	I_{SK}	$V_{SW} < -0.5 \text{ V or}$	$V_{SW} > V_{CC} + 0.5 \text{ V}$	-	±20	mA
switch current	I_{SW}	-0.5 V < V _S	$_{\rm W}$ < $\rm V_{\rm CC}$ + 0.5 V	-	±25	mA
supply current	I_{EE}	-		-	±20	mA
supply current	I_{CC}	-		-	50	mA
ground current	I_{GND}	-		-	-50	mA
storage temperature	T_{stg}	-		-65	+150	,C
total power dissipation	P _{tot}	-		-	500	mW
power dissipation	P	per switch		•	100	mW
Soldering temperature	T_L	10s	DIP	245		,C
Soldering temperature	*L	108	SOP	260		°C

Note:

[1] To avoid drawing V_{CC} current out of terminal nZ, when switch current flows into terminals nYn, the voltage drop across the bidirectional switch must not exceed 0.4V. If the switch current flows into terminal nZ, no V_{CC} current will flow out of terminals nYn, and in this case there is no limit for the voltage drop across the switch, but the voltages at nYn and nZ may not exceed V_{CC} or V_{EE}.

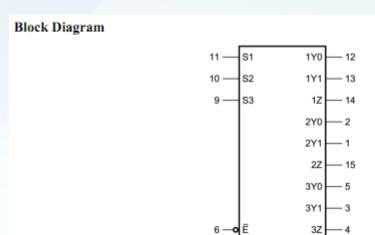


Figure 1. Logic symbol

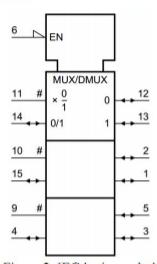


Figure 2. IEC logic symbol

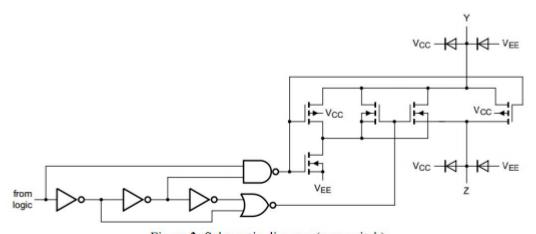


Figure 3. Schematic diagram (one switch)

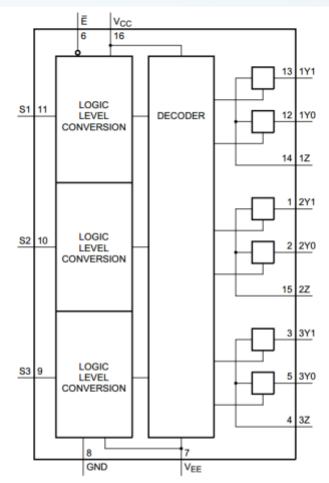
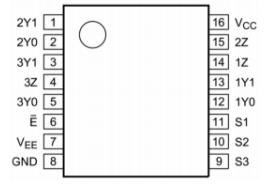



Figure 4. Functional diagram

Pin Configurations

Pin No.	Pin Name	Description			
1	2Y1	independent input or output			
2	2Y0	independent input or output			
3	3Y1	independent input or output			
4	3Z	common output or input			
5	3Y0	independent input or output			
6	Ē	enable input (active LOW)			
7	V _{EE}	supply voltage			
8	GND	ground supply voltage			
9	S3	select input			
10	S2	select input			
11	S1	select input			
12	1Y0	independent input or output			
13	1Y1	independent input or output			
14	1Z	common output or input			
15	2Z	common output or input			
16	V _{cc}	supply voltage			

Function Table

Inj	Charried OV	
Ē	Sn	Channel ON
L	L	nY0 to nZ
L	Н	nY1 to nZ
H	X	switches off

Note: H=HIGH voltage level; L=LOW voltage level; X=don't care.

Recommended Operating Conditions

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
supply voltage	V _{cc}	V _{CC} - GND	3.0	5.0	9.0	V
supply voltage	, cc	V _{CC} - V _{EE}	3.0	5.0	9.0	V
input voltage	$V_{\rm I}$	-	0	-	V_{CC}	V
switch voltage	V_{sw}	-	V_{EE}	-	V_{CC}	V
ambient temperature	T_{amb}	in free air	-40	-	+125	,C
input transition rise and fall rate		$V_{CC} = 4.5 \text{ V}$	-	1.67	139	ns/V
	$\Delta t/\Delta V$	$V_{CC} = 6.0 \text{ V}$	-	-	83	ns/V
		$V_{CC} = 9.0 \text{ V}$	-	-	31	ns/V

DC Characteristics

 $(T_{amb}=25\,^{\circ}\!\text{C}, \, voltages \, are \, referenced to \, GND \, (ground=0V), \, unless \, otherwise \, specified.)$

Parameter	Symbol	Condit	ions	Min.	Typ.	Max.	Unit
ON resistance (peak)	R _{ON(peak)}	$V_{is} = V_{CC}$ to V_{EE} ; $I_{SW} = 1000 \text{ uA}$	$V_{CC} = 4.5 \text{ V};$ $V_{EE} = 0 \text{ V}$	-	100	180	Ω
			7-27	-	90	160	Ω
			$V_{CC} = 4.5 \text{ V};$ $V_{EE} = -4.5 \text{ V}$	-	70	130	Ω
			$V_{CC} = 4.5 \text{ V};$ $V_{EE} = 0 \text{ V}$	-	80	140	Ω
		$I_{SW} = 1000 \text{ uA}$	$V_{CC} = 6.0 \text{ V};$ $V_{EE} = 0 \text{ V}$	-	70	120	Ω
	R _{ON(rail)}		$V_{CC} = 4.5 \text{ V};$ $V_{EE} = -4.5 \text{ V}$	-	60	105	Ω
ON resistance (rail)		the second secon	$V_{CC} = 4.5 \text{ V};$ $V_{EE} = 0 \text{ V}$	3	90	160	Ω
			$V_{CC} = 6.0 \text{ V};$ $V_{EE} = 0 \text{ V}$	-	80	140	Ω
			$V_{CC} = 4.5 \text{ V};$ $V_{EE} = -4.5 \text{ V}$	-	65	120	Ω
ON resistance mismatch between channels	ΔR_{ON} $V_{is} =$		$V_{CC} = 4.5 \text{ V};$ $V_{EE} = 0 \text{ V}$	-	9		Ω
		$V_{is} = V_{CC}$ to V_{EE}	$V_{CC} = 6.0 \text{ V};$ $V_{EE} = 0 \text{ V}$	-	8	-	Ω
			$V_{CC} = 4.5 \text{ V};$ $V_{EE} = -4.5 \text{ V}$	-	6	-	Ω

AC Characteristics

(T_{amb}=25°C, GND = 0 V; t_r= t_f= 6 ns; C_L= 50 pF; unless otherwise specified.)

Parameter	Symbol	Condit	ions	Min.	Typ.	Max.	Unit
propagation delay		V_{is} to V_{os} ; $R_L = \infty \Omega$; see Figure $9^{[1]}$	V _{CC} = 4.5 V; V _{EE} = 0 V	-	5	12	ns
	t _{pd}		$V_{CC} = 6.0 \text{ V};$ $V_{EE} = 0 \text{ V}$	-	4	10	ns
		350 - 19.00	$V_{CC} = 4.5 \text{ V};$ $V_{EE} = -4.5 \text{ V}$	-	4	8	ns
			V _{CC} = 4.5 V; V _{EE} = 0 V	-	20	44	ns
		\bar{E} to V_{es} ; $R_L = \infty \Omega$;	$V_{CC} = 5.0 \text{ V};$ $V_{EE} = 0 \text{ V};$ $C_L = 15 \text{ pF}$	-	17	-	ns
		see Figure 10 ^[2]	V _{CC} = 6.0 V; V _{EE} = 0 V	-	16	37	ns
turn-on time			V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	15	31	ns
turn-on time	t _{on} –	Sn to V_{os} ; $R_L = \infty \Omega$; see Figure $10^{[2]}$	V _{CC} = 4.5 V; V _{EE} = 0 V	-	25	44	ns
			$V_{CC} = 5.0 \text{ V};$ $V_{EE} = 0 \text{ V};$ $C_L = 15 \text{ pF}$	-	21	-	ns
			V _{CC} = 6.0 V; V _{EE} = 0 V	-	20	37	ns
			V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	15	31	ns
			V _{CC} = 4.5 V; V _{EE} = 0 V	-	21	42	ns
		\bar{E} to V_{os} ; $R_L=1 \text{ k}\Omega$;	$V_{CC} = 5.0 \text{ V};$ $V_{EE} = 0 \text{ V};$ $C_L = 15 \text{ pF}$	-	18	-	ns
turn off time		see Figure 10 ^[3]	V _{CC} = 6.0 V; V _{EE} = 0 V	-	17	36	ns
turn-off time	t _{off}	r	V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	15	29	ns
	-	Sn to V _{os} ;	V _{CC} = 4.5 V; V _{EE} = 0 V	-	20	42	ns
			5	$R_L = 1 \text{ k}\Omega;$ see Figure $10^{[3]}$	V _{CC} = 5.0 V; V _{EE} = 0 V; C _L = 15 pF	-	17

		$V_{CC} = 6.0 \text{ V}$ $V_{EE} = 0 \text{ V}$;	16	36	ns
		$V_{CC} = 4.5 \text{ V}$ $V_{EE} = -4.5 \text{ V}$	-	15	29	ns
power dissipation capacitance	C _{PD}	per switch; V_1 = GND to $V_{CC}^{[4]}$	-	36	-	pF

- [1] tpd is the same as tpHL and tpLH.
- [2] ton is the same as tpzH and tpzL.
- [3] toff is the same as tPHZ and tPLZ.
- [4] C_{PD} is used to determine the dynamic power dissipation (P_D in uW).

$$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma \{(C_L + C_{SW}) \times V_{CC}^2 \times f_O\}$$
 where:

f_i = input frequency in MHz;

fo = output frequency in MHz;

N = number of inputs switching;

 $\Sigma\{(C_L + C_{SW}) \times V_{CC}^2 \times f_O\} = \text{sum of outputs};$

C_L = output load capacitance in pF;

Csw = switch capacitance in pF;

 V_{CC} = supply voltage in V.

Testing Circuit

DC Testing Circuit

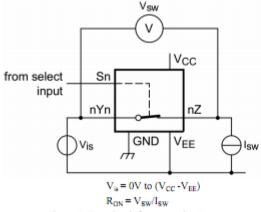


Figure 5. Test circuit for measuring RON

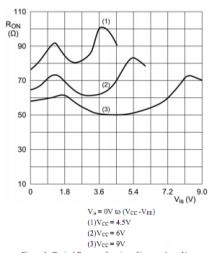


Figure 6. Typical Ron as a function of input voltage Vis

DC Testing Circuit 2

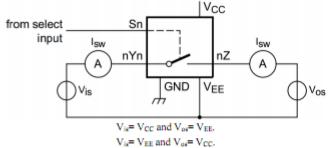


Figure 7. Test circuit for measuring OFF-state current

AC Testing Waveforms

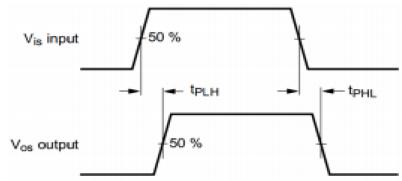
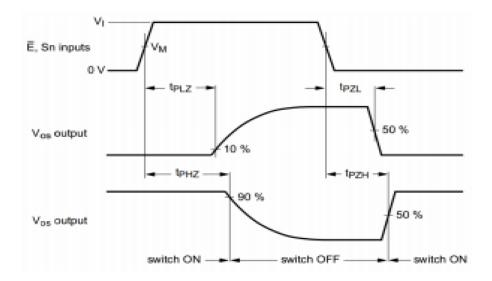



Figure 9. Input (Vis) to output (Vos) propagation delays

74HC4053: $V_M = 0.5 \times V_{CC}$.

Disclaimer

EVVOSEMI ("EVVO") reserves the right to make corrections, enhancements, improvements, and other changes to its products and services at any time, and to discontinue any product or service without notice.

EVVO warrants the performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used as deemed necessary by EVVO to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Customers should obtain and confirm the latest product information and specifications before final design, purchase, or use. EVVO makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does EVVO assume any liability for application assistance or customer product design. EVVO does not warrant or accept any liability for products that are purchased or used for any unintended or unauthorized application.

EVVO products are not authorized for use as critical components in life support devices or systems without the express written approval of EVVOSEMI.

The EVVO logo and EVVOSEMI are trademarks of EVVOSEMI or its subsidiaries in relevant jurisdictions. EVVO reserves the right to make changes without further notice to any products herein.