

ESD

TVS

MOS

LDO

Diode

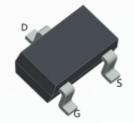
Sensor

DC-DC

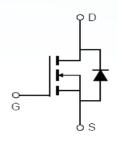
Product Specification

Domestic Part Number	IRLML2502
Overseas Part Number	IRLML2502
▶ Equivalent Part Number	IRLML2502

VDSS (V)	Rds (on)	ID(A)
20	35mΩ(Typ)@VGS=4.5V	2.6
	46mΩ(Typ)@VGS=2.5V	3.6


FEATURE:

• IRLML2502 uses advanced trench technology N-ch MOSFETs, which provides excellent RDSON and efficiency for most of the small power switching and load switch applications.

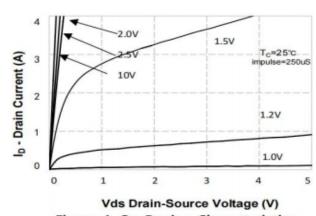

APPLICATIONS:

- Load Switch for Portable Devices
- Power Management

SOT-23

Absolute Maximum Ratings

Symbol	Parameter		Rating	Units
Voss	Drain-Source Voltage		20	V
Vgss	Gate-Source Voltage		±12	V
1-	2 11 2 10 10 150		3.6	^
ID ID	Continuous Drain Current(Vgs= -4.5V)	T _A =70°C	1.5	Α
TJ	Maximum Junction Temperature		150	°C
Тѕтс	Storage Temperature Range		-55 to 150	°C
Ірм	Pulsed Drain Current		12	Α
PD	Maximum Bayer Bissis eties	T _A =25°C	1.05	14/
PD	Maximum Power Dissipation			W
Eas	Avalanche Energy, Single Pulsed			mJ
RθJC	Thermal Resistance-Junction to Case			°C/W
RθJA	Thermal Resistance-Junction to Ambient		112	°C/W



Electrical Characteristics (T_A=25°C Unless Otherwise Noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max	Unit
Static C	Characteristics				•	
BVDSS	Drain-Source Breakdown Voltage	V _G S=0V, I _D =250uA	20			V
V _{GS(th)}	Gate threshold voltage	V _{DS} =V _{GS} ,I _D =250uA	0.4	0.6	1.1	V
_		V _G s=4.5V , I _D =3.5A		35	45	mΩ
RDS(ON)	Drain-Source On-state Resistance	Vgs=2.5V , Ip=2A		46	57	mΩ
Igss	Gate-source leakage current	Vgs=±12V, Vps=0V			±100	Α
	7	V _{DS} =16V,V _{GS} =0V,T _J =25°C			1	
IDSS	Zero gate voltage drain current	TJ=55°C			10	μA
Dynamic Characteristic						
Ciss	Input Capacitance			180		pF
Coss	Output Capacitance	V _G s=0V, V _D s=10V, Frequency=1.0MHz		37		
Crss	Reverse Transfer Capacitance	1 requestoy 1.0WH12		34		
Q G	Gate Total Charge			6.23		
Qgs	Gate-Source charge	Vps=15V, Vgs=4.5V, lps=5A		6		nC
Qgd	Gate-Drain charge	150 07 (0.5		
td(on)	Turn-on delay time			4.5		
tr	Turn-on Rise Time	V _{DD} =10V , V _G s=4.5V ,		31		no
td(off)	Turn-off Delay Time	Rg=3.3Ω, ID=3A		12		ns
tf	Turn-off Fall Time			4		
Rg	Gate Resistance	Vgs=0V,Vps=0V,F=1MHz				Ω
Diode Characteristics						
VsD	Diode Forward Voltage	Vgs=0V , Is=-1A , T _J =25°C			1.2	V
trr	Reverse Recovery Time	Isp=-4.1A,				ns
Qrr	Reverse Recovery Charge	dlsɒ/dt=-100A/µs				nC

Typical Electrical and Thermal Characteristics

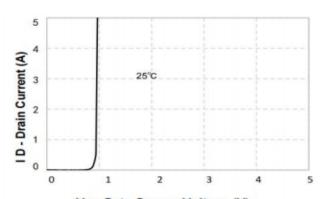
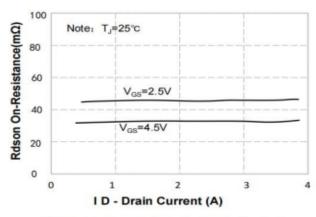



Figure 1. On-Region Characteristics

Vgs Gate-Source Voltage (V) Figure 2. Transfer Characteristics

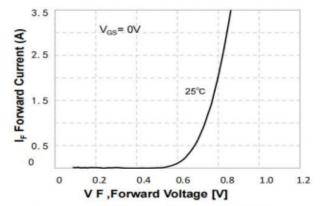
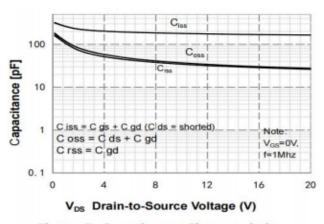



Figure 3. On-Resistance Variation vs **Drain Current and Gate Voltage**

Figure 4. Body Diode Forward Voltage **Variation with Source Current** and Temperature

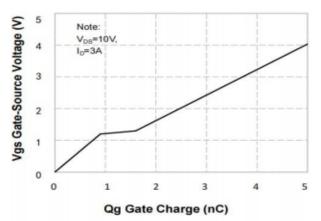
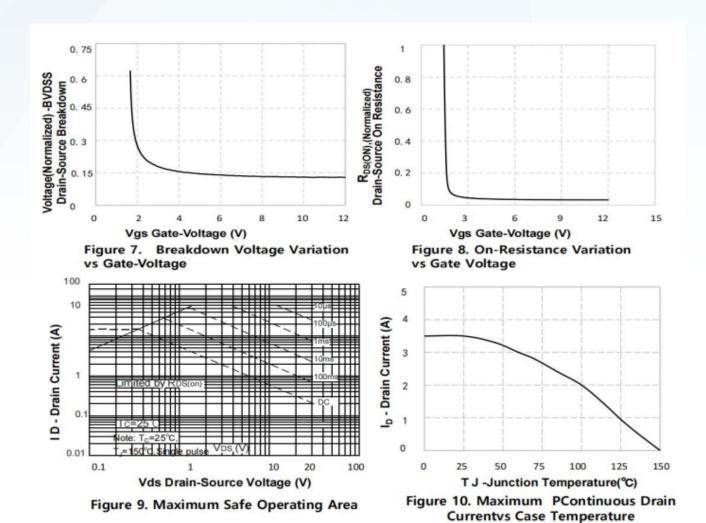
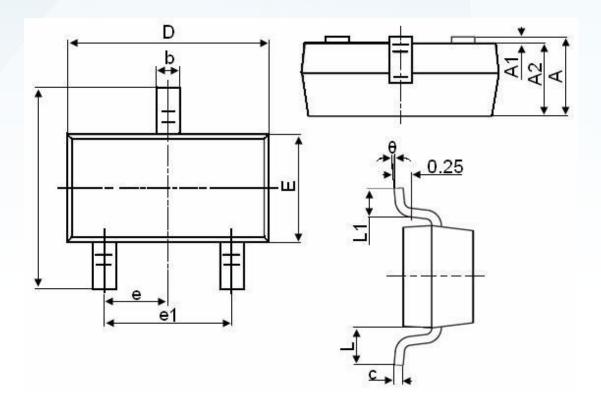



Figure 5. Capacitance Characteristics


Figure 6. Gate Charge Characteristics

Square Wave Pluse Duration(sec)
Figure 11. Transient Thermal Response Curve

S b al	Dimensions in Millimeters		
Symbol	MIN.	MAX.	
Α	0.900	1.150	
A1	0.000	0.100	
A2	0.900	1.050	
b	0.300	0.500	
С	0.080	0.150	
D	2.800	3.000	
E	1.200	1.400	
E1	2.250	2.550	
e	0.950TYP		
e1	1.800	2.000	
L	0.550REF		
L1	0.300	0.500	
θ	0°	8°	

Disclaimer

EVVOSEMI ("EVVO") reserves the right to make corrections, enhancements, improvements, and other changes to its products and services at any time, and to discontinue any product or service without notice.

EVVO warrants the performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used as deemed necessary by EVVO to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Customers should obtain and confirm the latest product information and specifications before final design, purchase, or use. EVVO makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does EVVO assume any liability for application assistance or customer product design. EVVO does not warrant or accept any liability for products that are purchased or used for any unintended or unauthorized application.

EVVO products are not authorized for use as critical components in life support devices or systems without the express written approval of EVVOSEMI.

The EVVO logo and EVVOSEMI are trademarks of EVVOSEMI or its subsidiaries in relevant jurisdictions. EVVO reserves the right to make changes without further notice to any products herein.